These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37204932)

  • 1. Mechanistic Insight into Electron Transfer from Fe(II)-Bearing Clay Minerals to Fe (Hydr)oxides.
    Qian A; Lu Y; Zhang Y; Yu C; Zhang P; Liao W; Yao Y; Zheng Y; Tong M; Yuan S
    Environ Sci Technol; 2023 May; 57(21):8015-8025. PubMed ID: 37204932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.
    Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D
    Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization.
    Zhao Z; Yuan Q; Meng Y; Luan F
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44874-44882. PubMed ID: 35138538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Insight into Humic Acid-Enhanced Hydroxyl Radical Production from Fe(II)-Bearing Clay Mineral Oxygenation.
    Yu C; Zhang Y; Lu Y; Qian A; Zhang P; Cui Y; Yuan S
    Environ Sci Technol; 2021 Oct; 55(19):13366-13375. PubMed ID: 34551244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.
    Schaefer MV; Gorski CA; Scherer MM
    Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions.
    Zhang N; Tong M; Yuan S
    Sci Total Environ; 2021 Dec; 801():149637. PubMed ID: 34416610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review.
    Fan Q; Wang L; Fu Y; Li Q; Liu Y; Wang Z; Zhu H
    Sci Total Environ; 2023 Jan; 855():159003. PubMed ID: 36155041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: Implications for cadmium mobility and fate under anaerobic conditions.
    Zhao X; Yuan Z; Wang S; Pan Y; Chen N; Tunc A; Cheung K; Alparov A; Chen W; Deevsalar R; Lin J; Jia Y
    Sci Total Environ; 2022 Nov; 848():157719. PubMed ID: 35914597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of interfacial electron transfer reactions on sulfamethoxazole degradation by reduced nontronite activating H
    Cui HJ; Ning Y; Wu C; Peng W; Cheng D; Yin L; Zhou W; Liao W
    J Environ Sci (China); 2023 Feb; 124():688-698. PubMed ID: 36182174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of Fe(II) species associated with clay minerals.
    Hofstetter TB; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2003 Feb; 37(3):519-28. PubMed ID: 12630467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.
    Neumann A; Olson TL; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6969-77. PubMed ID: 23517074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic oxidation of arsenite by bioreduced nontronite.
    Zhao Z; Meng Y; Wang Y; Lin L; Xie F; Luan F
    J Environ Sci (China); 2021 Dec; 110():21-27. PubMed ID: 34593191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites.
    Hofstetter TB; Neumann A; Schwarzenbach RP
    Environ Sci Technol; 2006 Jan; 40(1):235-42. PubMed ID: 16433357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging redox activity and Fe(II) at the microbe-mineral interface during Fe(III) reduction.
    Downie HF; Standerwick JP; Burgess L; Natrajan LS; Lloyd JR
    Res Microbiol; 2018 Dec; 169(10):582-589. PubMed ID: 29886258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sunlight-Induced Interfacial Electron Transfer of Ferrihydrite under Oxic Conditions: Mineral Transformation and Redox Active Species Production.
    Shu Z; Pan Z; Wang X; He H; Yan S; Zhu X; Song W; Wang Z
    Environ Sci Technol; 2022 Oct; 56(19):14188-14197. PubMed ID: 36098650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.
    Cooper DC; Picardal FF; Coby AJ
    Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation.
    Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R
    Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.