These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37205127)

  • 1. Freezing-induced wetting transitions on superhydrophobic surfaces.
    Lambley H; Graeber G; Vogt R; Gaugler LC; Baumann E; Schutzius TM; Poulikakos D
    Nat Phys; 2023; 19(5):649-655. PubMed ID: 37205127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascade Freezing of Supercooled Water Droplet Collectives.
    Graeber G; Dolder V; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Nov; 12(11):11274-11281. PubMed ID: 30354059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frost halos from supercooled water droplets.
    Jung S; Tiwari MK; Poulikakos D
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16073-8. PubMed ID: 23012410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric Ice Adhesion on Water-Repellent Coatings: Wetting and Surface Topology Effects.
    Yeong YH; Milionis A; Loth E; Sokhey J; Lambourne A
    Langmuir; 2015 Dec; 31(48):13107-16. PubMed ID: 26566168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention.
    Keshavarzi S; Momen G; Eberle P; Azimi Yancheshme A; Alvarez NJ; Jafari R
    J Colloid Interface Sci; 2024 Sep; 670():550-562. PubMed ID: 38776690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive model for ice formation on superhydrophobic surfaces.
    Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T
    Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests.
    Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.
    Schutzius TM; Jung S; Maitra T; Graeber G; Köhme M; Poulikakos D
    Nature; 2015 Nov; 527(7576):82-5. PubMed ID: 26536959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of supercooled droplet freezing on surfaces.
    Jung S; Tiwari MK; Doan NV; Poulikakos D
    Nat Commun; 2012 Jan; 3():615. PubMed ID: 22233625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imparting Icephobicity with Substrate Flexibility.
    Vasileiou T; Schutzius TM; Poulikakos D
    Langmuir; 2017 Jul; 33(27):6708-6718. PubMed ID: 28609620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures.
    Yan X; Au SCY; Chan SC; Chan YL; Leung NC; Wu WY; Sin DT; Zhao G; Chung CHY; Mei M; Yang Y; Qiu H; Yao S
    Nat Commun; 2024 Feb; 15(1):1567. PubMed ID: 38378825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review.
    Azimi Yancheshme A; Momen G; Jafari Aminabadi R
    Adv Colloid Interface Sci; 2020 May; 279():102155. PubMed ID: 32305656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.