These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37205127)

  • 21. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid.
    Ozbay S; Yuceel C; Erbil HY
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22067-77. PubMed ID: 26375386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Surface Icephobicity on an Elastic Substrate.
    He Z; Jamil MI; Li T; Zhang Q
    Langmuir; 2022 Jan; 38(1):18-35. PubMed ID: 34919404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superhydrophobic surfaces for extreme environmental conditions.
    Lambley H; Schutzius TM; Poulikakos D
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27188-27194. PubMed ID: 33077603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions.
    Emelyanenko AM; Boinovich LB; Bezdomnikov AA; Chulkova EV; Emelyanenko KA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24210-24219. PubMed ID: 28657289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic surfaces: are they really ice-repellent?
    Kulinich SA; Farhadi S; Nose K; Du XW
    Langmuir; 2011 Jan; 27(1):25-9. PubMed ID: 21141839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physics of icing and rational design of surfaces with extraordinary icephobicity.
    Schutzius TM; Jung S; Maitra T; Eberle P; Antonini C; Stamatopoulos C; Poulikakos D
    Langmuir; 2015 May; 31(17):4807-21. PubMed ID: 25346213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Superhydrophobic Metal Surfaces for Anti-Icing Applications.
    Montes Ruiz-Cabello FJ; Ibañez-Ibañez P; Paz-Gomez G; Cabrerizo-Vilchez M; Rodriguez-Valverde MA
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30175989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freezing Characteristics of a Water Droplet on a Multiscale Superhydrophobic Surface.
    Hatte S; Kant K; Pitchumani R
    Langmuir; 2023 Aug; 39(33):11898-11909. PubMed ID: 37552572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wetting state transitions of individual condensed droplets on pillared textured surfaces.
    Chu C; Zhao Y; Hao P; Lv C
    Soft Matter; 2023 Jan; 19(4):670-678. PubMed ID: 36597934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography.
    Hou Y; Yu M; Shang Y; Zhou P; Song R; Xu X; Chen X; Wang Z; Yao S
    Phys Rev Lett; 2018 Feb; 120(7):075902. PubMed ID: 29542940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability.
    Hu A; Yuan Q; Guo K; Wang Z; Liu D
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency.
    Graeber G; Martin Kieliger OB; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43275-43281. PubMed ID: 30452216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances of bio-inspired anti-icing surfaces.
    Jiang S; Diao Y; Yang H
    Adv Colloid Interface Sci; 2022 Oct; 308():102756. PubMed ID: 36007284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces.
    Charpentier TV; Neville A; Millner P; Hewson RW; Morina A
    J Colloid Interface Sci; 2013 Mar; 394():539-44. PubMed ID: 23245630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.