BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37205350)

  • 1. Enhanced Feature Selection for Microbiome Data using FLORAL: Scalable Log-ratio Lasso Regression.
    Fei T; Funnell T; Waters NR; Raj SS; Sadeghi K; Dai A; Miltiadous O; Shouval R; Lv M; Peled JU; Ponce DM; Perales MA; Gönen M; van den Brink MRM
    bioRxiv; 2023 Dec; ():. PubMed ID: 37205350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LOCOM: A logistic regression model for testing differential abundance in compositional microbiome data with false discovery rate control.
    Hu Y; Satten GA; Hu YJ
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122788119. PubMed ID: 35867822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data.
    Chen EZ; Li H
    Bioinformatics; 2016 Sep; 32(17):2611-7. PubMed ID: 27187200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The γ-OMP Algorithm for Feature Selection With Application to Gene Expression Data.
    Tsagris M; Papadovasilakis Z; Lakiotaki K; Tsamardinos I
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1214-1224. PubMed ID: 33035156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variance Component Selection With Applications to Microbiome Taxonomic Data.
    Zhai J; Kim J; Knox KS; Twigg HL; Zhou H; Zhou JJ
    Front Microbiol; 2018; 9():509. PubMed ID: 29643839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. coda4microbiome: compositional data analysis for microbiome cross-sectional and longitudinal studies.
    Calle ML; Pujolassos M; Susin A
    BMC Bioinformatics; 2023 Mar; 24(1):82. PubMed ID: 36879227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive direction-assisted test for microbiome compositional data.
    Zhang W; Liu A; Zhang Z; Chen G; Li Q
    Bioinformatics; 2022 Jul; 38(14):3493-3500. PubMed ID: 35640978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maximum-type microbial differential abundance test with application to high-dimensional microbiome data analyses.
    Li Z; Yu X; Guo H; Lee T; Hu J
    Front Cell Infect Microbiol; 2022; 12():988717. PubMed ID: 36389165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional knockoff filter for high-dimensional regression analysis of microbiome data.
    Srinivasan A; Xue L; Zhan X
    Biometrics; 2021 Sep; 77(3):984-995. PubMed ID: 32683674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ).
    Ling W; Zhao N; Plantinga AM; Launer LJ; Fodor AA; Meyer KA; Wu MC
    Microbiome; 2021 Sep; 9(1):181. PubMed ID: 34474689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming the inadaptability of sparse group lasso for data with various group structures by stacking.
    He H; Guo X; Yu J; Ai C; Shi S
    Bioinformatics; 2022 Mar; 38(6):1542-1549. PubMed ID: 34908103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning sparse log-ratios for high-throughput sequencing data.
    Gordon-Rodriguez E; Quinn TP; Cunningham JP
    Bioinformatics; 2021 Dec; 38(1):157-163. PubMed ID: 34498030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian compositional regression with structured priors for microbiome feature selection.
    Zhang L; Shi Y; Jenq RR; Do KA; Peterson CB
    Biometrics; 2021 Sep; 77(3):824-838. PubMed ID: 32686846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Adaptive Multivariate Two-Sample Test With Application to Microbiome Differential Abundance Analysis.
    Banerjee K; Zhao N; Srinivasan A; Xue L; Hicks SD; Middleton FA; Wu R; Zhan X
    Front Genet; 2019; 10():350. PubMed ID: 31068967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive analysis methods for human microbiome data with application to Parkinson's disease.
    Dong M; Li L; Chen M; Kusalik A; Xu W
    PLoS One; 2020; 15(8):e0237779. PubMed ID: 32834004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiome Toolbox: methodological approaches to derive and visualize microbiome trajectories.
    Banjac J; Sprenger N; Dogra SK
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36469345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Innovative Excited-ACS-IDGWO Algorithm for Optimal Biomedical Data Feature Selection.
    Segera D; Mbuthia M; Nyete A
    Biomed Res Int; 2020; 2020():8506365. PubMed ID: 32908920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. metamicrobiomeR: an R package for analysis of microbiome relative abundance data using zero-inflated beta GAMLSS and meta-analysis across studies using random effects models.
    Ho NT; Li F; Wang S; Kuhn L
    BMC Bioinformatics; 2019 Apr; 20(1):188. PubMed ID: 30991942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.