These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37205406)

  • 61. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice.
    Sun C; Cao Y; Huang J; Huang K; Lu Y; Zhong C
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996053
    [No Abstract]   [Full Text] [Related]  

  • 62.
    Chauvière L; Pothof F; Gansel KS; Klon-Lipok J; Aarts AAA; Holzhammer T; Paul O; Singer WJ; Ruther P
    Front Neurosci; 2019; 13():464. PubMed ID: 31164800
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans.
    Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J
    Elife; 2022 Dec; 11():. PubMed ID: 36546674
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats.
    Luo TZ; Bondy AG; Gupta D; Elliott VA; Kopec CD; Brody CD
    Elife; 2020 Oct; 9():. PubMed ID: 33089778
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Scalable Three-Dimensional Recording Electrodes for Probing Biological Tissues.
    Lee JM; Lin D; Hong G; Kim KH; Park HG; Lieber CM
    Nano Lett; 2022 Jun; 22(11):4552-4559. PubMed ID: 35583378
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Self-Assembled Origami Neural Probes for Scalable, Multifunctional, Three-Dimensional Neural Interface.
    Yan D; Ruiz JRL; Hsieh ML; Jeong D; Vöröslakos M; Lanzio V; Warner EV; Ko E; Tian Y; Patel PR; ElBidweihy H; Smith CS; Lee JH; Cheon J; Buzsáki G; Yoon E
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712092
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A micromachined silicon multielectrode for multiunit recording.
    Spence AJ; Hoy RR; Isaacson MS
    J Neurosci Methods; 2003 Jun; 126(2):119-26. PubMed ID: 12814836
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication and characterization of a high-resolution neural probe for stereoelectroencephalography and single neuron recording.
    Pothof F; Anees S; Leupold J; Bonini L; Paul O; Orban GA; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5244-7. PubMed ID: 25571176
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces.
    Fiáth R; Hofer KT; Csikós V; Horváth D; Nánási T; Tóth K; Pothof F; Böhler C; Asplund M; Ruther P; Ulbert I
    Biomed Tech (Berl); 2018 Jun; 63(3):301-315. PubMed ID: 29478038
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel 3D-printed multi-driven system for large-scale neurophysiological recordings in multiple brain regions.
    Sheng T; Xing D; Wu Y; Wang Q; Li X; Lu W
    J Neurosci Methods; 2021 Sep; 361():109286. PubMed ID: 34242704
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice.
    Juavinett AL; Bekheet G; Churchland AK
    Elife; 2019 Aug; 8():. PubMed ID: 31411559
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings.
    Donaldson PD; Navabi ZS; Carter RE; Fausner SML; Ghanbari L; Ebner TJ; Swisher SL; Kodandaramaiah SB
    Adv Healthc Mater; 2022 Sep; 11(18):e2200626. PubMed ID: 35869830
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording.
    Kim JM; Im C; Lee WR
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.
    Abbott J; Ye T; Ham D; Park H
    Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.