These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37205406)

  • 81. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Flexible, high-resolution thin-film electrodes for human and animal neural research.
    Chiang CH; Wang C; Barth K; Rahimpour S; Trumpis M; Duraivel S; Rachinskiy I; Dubey A; Wingel KE; Wong M; Witham NS; Odell T; Woods V; Bent B; Doyle W; Friedman D; Bihler E; Reiche CF; Southwell DG; Haglund MM; Friedman AH; Lad SP; Devore S; Devinsky O; Solzbacher F; Pesaran B; Cogan G; Viventi J
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34010815
    [No Abstract]   [Full Text] [Related]  

  • 83. Tangential high-density electrode insertions allow to simultaneously measure neuronal activity across an extended region of the visual field in mouse superior colliculus.
    Sibille J; Gehr C; Teh KL; Kremkow J
    J Neurosci Methods; 2022 Jul; 376():109622. PubMed ID: 35525463
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Ultra-high density electrodes improve detection, yield, and cell type identification in neuronal recordings.
    Ye Z; Shelton AM; Shaker JR; Boussard J; Colonell J; Birman D; Manavi S; Chen S; Windolf C; Hurwitz C; Namima T; Pedraja F; Weiss S; Raducanu B; Ness TV; Jia X; Mastroberardino G; Rossi LF; Carandini M; Häusser M; Einevoll GT; Laurent G; Sawtell NB; Bair W; Pasupathy A; Lopez CM; Dutta B; Paninski L; Siegle JH; Koch C; Olsen SR; Harris TD; Steinmetz NA
    bioRxiv; 2024 Apr; ():. PubMed ID: 37662298
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Brain-Silicon Interface for High-Resolution in vitro Neural Recording.
    Aziz JN; Genov R; Bardakjian BL; Derchansky M; Carlen PL
    IEEE Trans Biomed Circuits Syst; 2007 Mar; 1(1):56-62. PubMed ID: 23851521
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A Parylene Neural Probe Array for Multi-Region Deep Brain Recordings.
    Wang X; Weltman Hirschberg A; Xu H; Slingsby-Smith Z; Lecomte A; Scholten K; Song D; Meng E
    J Microelectromech Syst; 2020 Aug; 29(4):499-513. PubMed ID: 35663261
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys.
    Pomberger T; Hage SR
    J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Thin flexible arrays for long-term multi-electrode recordings in macaque primary visual cortex.
    Merken L; Schelles M; Ceyssens F; Kraft M; Janssen P
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36215972
    [No Abstract]   [Full Text] [Related]  

  • 89. Multisite silicon probes enable simultaneous recording of spontaneous and evoked activity in multiple isolated C-fibres in rat saphenous nerve.
    Sales AC; Newton GWT; Pickering AE; Dunham JP
    J Neurosci Methods; 2022 Feb; 368():109419. PubMed ID: 34800543
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Large-scale recording of neurons by movable silicon probes in behaving rodents.
    Vandecasteele M; M S; Royer S; Belluscio M; Berényi A; Diba K; Fujisawa S; Grosmark A; Mao D; Mizuseki K; Patel J; Stark E; Sullivan D; Watson B; Buzsáki G
    J Vis Exp; 2012 Mar; (61):e3568. PubMed ID: 22415550
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Multiplexed, high density electrophysiology with nanofabricated neural probes.
    Du J; Blanche TJ; Harrison RR; Lester HA; Masmanidis SC
    PLoS One; 2011; 6(10):e26204. PubMed ID: 22022568
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array With 19584 Electrodes and High SNR.
    Yuan X; Hierlemann A; Frey U
    IEEE J Solid-State Circuits; 2021 Aug; 56(8):2466-2475. PubMed ID: 34326555
    [TBL] [Abstract][Full Text] [Related]  

  • 93. CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform.
    Saleh MS; Ritchie SM; Nicholas MA; Gordon HL; Hu C; Jahan S; Yuan B; Bezbaruah R; Reddy JW; Ahmed Z; Chamanzar M; Yttri EA; Panat RP
    Sci Adv; 2022 Oct; 8(40):eabj4853. PubMed ID: 36197979
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 95. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
    Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B
    Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652
    [TBL] [Abstract][Full Text] [Related]  

  • 96. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers.
    Le Floch P; Zhao S; Liu R; Molinari N; Medina E; Shen H; Wang Z; Kim J; Sheng H; Partarrieu S; Wang W; Sessler C; Zhang G; Park H; Gong X; Spencer A; Lee J; Ye T; Tang X; Wang X; Bertoldi K; Lu N; Kozinsky B; Suo Z; Liu J
    Nat Nanotechnol; 2024 Mar; 19(3):319-329. PubMed ID: 38135719
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Feasibility of Nitrogen Doped Ultrananocrystalline Diamond Microelectrodes for Electrophysiological Recording From Neural Tissue.
    Wong YT; Ahnood A; Maturana MI; Kentler W; Ganesan K; Grayden DB; Meffin H; Prawer S; Ibbotson MR; Burkitt AN
    Front Bioeng Biotechnol; 2018; 6():85. PubMed ID: 29988378
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 99. High-performance, inexpensive setup for simultaneous multisite recording of electrophysiological signals and mesoscale voltage imaging in the mouse cortex.
    Bermudez-Contreras E; Chekhov S; Sun J; Tarnowsky J; McNaughton BL; Mohajerani MH
    Neurophotonics; 2018 Apr; 5(2):025005. PubMed ID: 29651448
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording.
    Scholvin J; Kinney JP; Bernstein JG; Moore-Kochlacs C; Kopell N; Fonstad CG; Boyden ES
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):120-130. PubMed ID: 26699649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.