BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37205440)

  • 41. ATP binding by proteasomal ATPases regulates cellular assembly and substrate-induced functions of the 26 S proteasome.
    Kim YC; Li X; Thompson D; DeMartino GN
    J Biol Chem; 2013 Feb; 288(5):3334-45. PubMed ID: 23212908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97.
    Sha Z; Goldberg AL
    Curr Biol; 2014 Jul; 24(14):1573-1583. PubMed ID: 24998528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular signaling pathways regulating muscle proteolysis during atrophy.
    Franch HA; Price SR
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):271-5. PubMed ID: 15809529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of Gcn4 with target gene chromatin is modulated by proteasome function.
    Howard GC; Tansey WP
    Mol Biol Cell; 2016 Sep; 27(17):2735-41. PubMed ID: 27385344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Muscle wasting from kidney failure-a model for catabolic conditions.
    Wang XH; Mitch WE
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2230-8. PubMed ID: 23872437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The 19S proteasome activator promotes human cytomegalovirus immediate early gene expression through proteolytic and nonproteolytic mechanisms.
    Winkler LL; Kalejta RF
    J Virol; 2014 Oct; 88(20):11782-90. PubMed ID: 25078702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cdc48 chaperone and adaptor Ubx4 distribute the proteasome in the nucleus for anaphase proteolysis.
    Chien CY; Chen RH
    J Biol Chem; 2013 Dec; 288(52):37180-91. PubMed ID: 24225956
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that proteolysis of Gal4 cannot explain the transcriptional effects of proteasome ATPase mutations.
    Russell SJ; Johnston SA
    J Biol Chem; 2001 Mar; 276(13):9825-31. PubMed ID: 11152478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The proteasome: friend and foe of mitochondrial biogenesis.
    Krämer L; Groh C; Herrmann JM
    FEBS Lett; 2021 Apr; 595(8):1223-1238. PubMed ID: 33249599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alpha-Pal/NRF-1 regulates the promoter of the human integrin-associated protein/CD47 gene.
    Chang WT; Huang AM
    J Biol Chem; 2004 Apr; 279(15):14542-50. PubMed ID: 14747477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.
    Baumann CW; Liu HM; Thompson LV
    PLoS One; 2016; 11(8):e0160839. PubMed ID: 27513942
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle.
    Carlisle C; Prill K; Pilgrim D
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29271938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome.
    Ramachandran KV; Fu JM; Schaffer TB; Na CH; Delannoy M; Margolis SS
    Mol Cell; 2018 Jul; 71(1):169-177.e6. PubMed ID: 29979964
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.
    Tilignac T; Temparis S; Combaret L; Taillandier D; Pouch MN; Cervek M; Cardenas DM; Le Bricon T; Debiton E; Samuels SE; Madelmont JC; Attaix D
    Cancer Res; 2002 May; 62(10):2771-7. PubMed ID: 12019153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses.
    Pigna E; Renzini A; Greco E; Simonazzi E; Fulle S; Mancinelli R; Moresi V; Adamo S
    Skelet Muscle; 2018 Feb; 8(1):6. PubMed ID: 29477142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ubiquitin-proteasome-dependent muscle proteolysis responds slowly to insulin release and refeeding in starved rats.
    Kee AJ; Combaret L; Tilignac T; Souweine B; Aurousseau E; Dalle M; Taillandier D; Attaix D
    J Physiol; 2003 Feb; 546(Pt 3):765-76. PubMed ID: 12563002
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia.
    Attaix D; Combaret L; Béchet D; Taillandier D
    Curr Opin Support Palliat Care; 2008 Dec; 2(4):262-6. PubMed ID: 19069311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity.
    Li X; Matilainen O; Jin C; Glover-Cutter KM; Holmberg CI; Blackwell TK
    PLoS Genet; 2011 Jun; 7(6):e1002119. PubMed ID: 21695230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FOXO1 cooperates with C/EBPδ and ATF4 to regulate skeletal muscle atrophy transcriptional program during fasting.
    Oyabu M; Takigawa K; Mizutani S; Hatazawa Y; Fujita M; Ohira Y; Sugimoto T; Suzuki O; Tsuchiya K; Suganami T; Ogawa Y; Ishihara K; Miura S; Kamei Y
    FASEB J; 2022 Feb; 36(2):e22152. PubMed ID: 35061305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting.
    Tisdale MJ
    J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.