These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37205507)

  • 1. DNA Combing
    Meroni A; Wells SE; Fonseca C; Ray Chaudhuri A; Caldecott KW; Vindigni A
    bioRxiv; 2023 May; ():. PubMed ID: 37205507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA combing versus DNA spreading and the separation of sister chromatids.
    Meroni A; Wells SE; Fonseca C; Ray Chaudhuri A; Caldecott KW; Vindigni A
    J Cell Biol; 2024 Apr; 223(4):. PubMed ID: 38315097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Replicating Yeast Chromosomes by DNA Combing.
    Gallo D; Wang G; Yip CM; Brown GW
    Cold Spring Harb Protoc; 2016 Feb; 2016(2):pdb.prot085118. PubMed ID: 26832684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: fork uncoupling or gap formation.
    Svoboda DL; Vos JM
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):11975-9. PubMed ID: 8618826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sister chromatid-sensitive Hi-C to map the conformation of replicated genomes.
    Mitter M; Takacs Z; Köcher T; Micura R; Langer CCH; Gerlich DW
    Nat Protoc; 2022 Jun; 17(6):1486-1517. PubMed ID: 35478248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule Analysis of DNA Replication Dynamics in Budding Yeast and Human Cells by DNA Combing.
    Tourrière H; Saksouk J; Lengronne A; Pasero P
    Bio Protoc; 2017 Jun; 7(11):e2305. PubMed ID: 34541074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro.
    Higuchi K; Katayama T; Iwai S; Hidaka M; Horiuchi T; Maki H
    Genes Cells; 2003 May; 8(5):437-49. PubMed ID: 12694533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA fiber combing protocol using in-house reagents and coverslips to analyze replication fork dynamics in mammalian cells.
    Moore G; Jimenez Sainz J; Jensen RB
    STAR Protoc; 2022 Jun; 3(2):101371. PubMed ID: 35573479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic differences between sister chromatids?
    Lansdorp PM; Falconer E; Tao J; Brind'Amour J; Naumann U
    Ann N Y Acad Sci; 2012 Aug; 1266():1-6. PubMed ID: 22901250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of DNA combing to study DNA replication in Xenopus and human cell-free systems.
    Marheineke K; Goldar A; Krude T; Hyrien O
    Methods Mol Biol; 2009; 521():575-603. PubMed ID: 19563130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of DNA Replication in Fission Yeast by Combing.
    Iyer DR; Das S; Rhind N
    Cold Spring Harb Protoc; 2018 Mar; 2018(3):. PubMed ID: 28733405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks.
    Jones JM; Nakai H
    J Mol Biol; 2001 Oct; 312(5):935-47. PubMed ID: 11580240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Fission Yeast Single DNA Molecules on the Megabase Scale Using DNA Combing.
    Kaykov A; Nurse P
    Methods Mol Biol; 2018; 1721():9-24. PubMed ID: 29423843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A replication fork determinant for the establishment of sister chromatid cohesion.
    Minamino M; Bouchoux C; Canal B; Diffley JFX; Uhlmann F
    Cell; 2023 Feb; 186(4):837-849.e11. PubMed ID: 36693376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together.
    Seeber A; Hegnauer AM; Hustedt N; Deshpande I; Poli J; Eglinger J; Pasero P; Gut H; Shinohara M; Hopfner KP; Shimada K; Gasser SM
    Mol Cell; 2016 Dec; 64(5):951-966. PubMed ID: 27889450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Cohesin Association to Newly Replicated DNA Through Nascent Strand Binding Assay (NSBA).
    Frattini C; Bermejo R
    Methods Mol Biol; 2019; 2004():139-153. PubMed ID: 31147915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parental histone distribution and location of the replication obstacle at nascent strands control homologous recombination.
    González-Garrido C; Prado F
    Cell Rep; 2023 Mar; 42(3):112174. PubMed ID: 36862554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size.
    Wu CA; Zechner EL; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4030-44. PubMed ID: 1740451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication fork reactivation downstream of a blocked nascent leading strand.
    Heller RC; Marians KJ
    Nature; 2006 Feb; 439(7076):557-62. PubMed ID: 16452972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both strands of polyoma DNA are replicated discontinuously with ribonucleotide primers in vivo.
    Närkhammar-Meuth M; Kowalski J; Denhardt DT
    J Virol; 1981 Jul; 39(1):21-30. PubMed ID: 6268811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.