These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37205507)

  • 21. A Live-Cell Imaging Approach for Measuring DNA Replication Rates.
    Dovrat D; Dahan D; Sherman S; Tsirkas I; Elia N; Aharoni A
    Cell Rep; 2018 Jul; 24(1):252-258. PubMed ID: 29972785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.
    Yu C; Gan H; Zhang Z
    Methods Mol Biol; 2018; 1672():227-238. PubMed ID: 29043628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed.
    Pham TM; Tan KW; Sakumura Y; Okumura K; Maki H; Akiyama MT
    Mol Microbiol; 2013 Nov; 90(3):584-96. PubMed ID: 23998701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs.
    Sanders AD; Falconer E; Hills M; Spierings DCJ; Lansdorp PM
    Nat Protoc; 2017 Jun; 12(6):1151-1176. PubMed ID: 28492527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation.
    McGlynn P; Lloyd RG
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8227-34. PubMed ID: 11459957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression.
    Yao NY; Georgescu RE; Finkelstein J; O'Donnell ME
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13236-41. PubMed ID: 19666586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of the bacteriophage T4 replisome to noncoding lesions and regression of a stalled replication fork.
    Nelson SW; Benkovic SJ
    J Mol Biol; 2010 Sep; 401(5):743-56. PubMed ID: 20600127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4.
    Whitby MC; Osman F; Dixon J
    J Biol Chem; 2003 Feb; 278(9):6928-35. PubMed ID: 12473680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PCNA promotes context-specific sister chromatid cohesion establishment separate from that of chromatin condensation.
    Zuilkoski CM; Skibbens RV
    Cell Cycle; 2020 Oct; 19(19):2436-2450. PubMed ID: 32926661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of sister chromatid resolution during cell cycle progression.
    Stanyte R; Nuebler J; Blaukopf C; Hoefler R; Stocsits R; Peters JM; Gerlich DW
    J Cell Biol; 2018 Jun; 217(6):1985-2004. PubMed ID: 29695489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that replication fork components catalyze establishment of cohesion between sister chromatids.
    Carson DR; Christman MF
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8270-5. PubMed ID: 11459963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins.
    Aria V; Yeeles JTP
    Mol Cell; 2018 Nov; 73(2):199-211.e10. PubMed ID: 30451148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing.
    Bianco JN; Poli J; Saksouk J; Bacal J; Silva MJ; Yoshida K; Lin YL; Tourrière H; Lengronne A; Pasero P
    Methods; 2012 Jun; 57(2):149-57. PubMed ID: 22579803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discontinuous synthesis of both strands at the growing fork during polyoma DNA replication in vitro.
    Närkhammar-Meuth M; Eliasson R; Magnusson G
    J Virol; 1981 Jul; 39(1):11-20. PubMed ID: 6168768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Replication dynamics: biases and robustness of DNA fiber analysis.
    Técher H; Koundrioukoff S; Azar D; Wilhelm T; Carignon S; Brison O; Debatisse M; Le Tallec B
    J Mol Biol; 2013 Nov; 425(23):4845-55. PubMed ID: 23557832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA replication profiling by molecular combing on single DNA fibers.
    Fu H; Aladjem MI
    STAR Protoc; 2022 Jun; 3(2):101290. PubMed ID: 35463463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the replication fork in ultraviolet light-irradiated human cells.
    Cordeiro-Stone M; Schumacher RI; Meneghini R
    Biophys J; 1979 Aug; 27(2):287-300. PubMed ID: 233582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mre11 complex links sister chromatids to promote repair of a collapsed replication fork.
    Zhu M; Zhao H; Limbo O; Russell P
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):8793-8798. PubMed ID: 30104346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combing of picogram level DNA equivalent to genomic DNA present in single human cell by self propelled droplet motion over a stable gradient surface.
    Yadav H; Algaonkar PS; Chakraborty S; Ramakrishna W
    J Colloid Interface Sci; 2024 Feb; 655():451-465. PubMed ID: 37951002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.