BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37205630)

  • 1. Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams.
    Vento V; Roelli P; Verlekar S; Galland C
    Nano Lett; 2023 Jun; 23(11):4885-4892. PubMed ID: 37205630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband Raman scattering enhancement with reduced heat generation in a dielectric-metal hybrid nanocavity.
    Liu S; Li J; Wang H; Tao Q; Zhong L; Lu X
    Opt Express; 2021 Jun; 29(13):20092-20104. PubMed ID: 34266106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoimprinted plasmonic nanocavity arrays.
    Kim S; Xuan Y; Drachev VP; Varghese LT; Fan L; Qi M; Webb KJ
    Opt Express; 2013 Jul; 21(13):15081-9. PubMed ID: 23842295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode.
    Zhang Y; Esteban R; Boto RA; Urbieta M; Arrieta X; Shan C; Li S; Baumberg JJ; Aizpurua J
    Nanoscale; 2021 Jan; 13(3):1938-1954. PubMed ID: 33442716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable generation of cylindrical vector beams with an all-fiber laser using polarization-maintaining and ring-core fibers.
    Yimin Z; Tao R; Li H; Fang W; Dong Z; Dai C; Xu L; Gu C; Chen W; Zhu Y; Zhan Q; Yao P
    Opt Express; 2020 Jun; 28(12):18351-18359. PubMed ID: 32680033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of light emission of quantum emitters coupled to silicon nanoantenna using cylindrical vector beams.
    Montagnac M; Brûlé Y; Cuche A; Poumirol JM; Weber SJ; Müller J; Larrieu G; Larrey V; Fournel F; Boisron O; Masenelli B; Colas des Francs G; Agez G; Paillard V
    Light Sci Appl; 2023 Sep; 12(1):239. PubMed ID: 37726280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic spherical heterotrimer systems for plasmonic-based improvement in hyper-Raman scattering.
    Alsawafta M
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35921800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs.
    Chikkaraddy R; Baumberg JJ
    ACS Photonics; 2021 Sep; 8(9):2811-2817. PubMed ID: 34553005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate engineering of plasmonic nanocavity antenna modes.
    Xiong X; Clarke D; Lai Y; Bai P; Png CE; Wu L; Hess O
    Opt Express; 2023 Jan; 31(2):2345-2358. PubMed ID: 36785250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams.
    Sancho-Parramon J; Bosch S
    ACS Nano; 2012 Sep; 6(9):8415-23. PubMed ID: 22920735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced excitation and readout of plasmonic cavity modes in NPoM via SiN waveguides for on-chip SERS.
    Vázquez-Lozano JE; Baumberg JJ; Martínez A
    Opt Express; 2022 Jan; 30(3):4553-4563. PubMed ID: 35209689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries.
    Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD
    Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets.
    Hu S; Elliott E; Sánchez-Iglesias A; Huang J; Guo C; Hou Y; Kamp M; Goerlitzer ESA; Bedingfield K; de Nijs B; Peng J; Demetriadou A; Liz-Marzán LM; Baumberg JJ
    Adv Sci (Weinh); 2023 Apr; 10(11):e2207178. PubMed ID: 36737852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant harmonic generation in AlGaAs nanoantennas probed by cylindrical vector beams.
    Camacho-Morales R; Bautista G; Zang X; Xu L; Turquet L; Miroshnichenko A; Tan HH; Lamprianidis A; Rahmani M; Jagadish C; Neshev DN; Kauranen M
    Nanoscale; 2019 Jan; 11(4):1745-1753. PubMed ID: 30623948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams.
    Sakai K; Nomura K; Yamamoto T; Omura T; Sasaki K
    Sci Rep; 2016 Oct; 6():34967. PubMed ID: 27734923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.