These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37206139)

  • 1. Opto-mechanical self-adjustment model of the human eye.
    Shahiri M; Jóźwik A; Asejczyk M
    Biomed Opt Express; 2023 May; 14(5):1923-1944. PubMed ID: 37206139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm.
    Rahmati SM; Razaghi R; Karimi A
    J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically inspired biomechanical model of the human eyeball.
    Sródka W; Iskander DR
    J Biomed Opt; 2008; 13(4):044034. PubMed ID: 19021361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How a dynamic optical system maintains image quality: Self-adjustment of the human eye.
    Józwik A; Asejczyk-Widlicka M; Kurzynowski P; Pierscionek BK
    J Vis; 2021 Mar; 21(3):6. PubMed ID: 33656560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of the Healthy and Keratoconic Corneas: A Combination of the Clinical Data, Finite Element Analysis, and Artificial Neural Network.
    Karimi A; Meimani N; Razaghi R; Rahmati SM; Jadidi K; Rostami M
    Curr Pharm Des; 2018; 24(37):4474-4483. PubMed ID: 30582471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models.
    Jannesari M; Kadkhodaei M; Mosaddegh P; Kasprzak H; Behrouz MJ
    Acta Bioeng Biomech; 2018; 20(1):39-48. PubMed ID: 29658515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cross-sectional study to compare intraocular pressure measurement by sequential use of Goldman applanation tonometry, dynamic contour tonometry, ocular response analyzer, and Corvis ST.
    Tejwani S; Dinakaran S; Joshi A; Shetty R; Sinha Roy A
    Indian J Ophthalmol; 2015 Nov; 63(11):815-20. PubMed ID: 26669331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis.
    Boszczyk A; Kasprzak H; Jóźwik A
    Ophthalmic Physiol Opt; 2017 May; 37(3):253-262. PubMed ID: 28439976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes.
    Tian L; Wang D; Wu Y; Meng X; Chen B; Ge M; Huang Y
    Acta Ophthalmol; 2016 Aug; 94(5):e317-24. PubMed ID: 25639340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST.
    Eliasy A; Chen KJ; Vinciguerra R; Maklad O; Vinciguerra P; Ambrósio R; Roberts CJ; Elsheikh A
    Exp Eye Res; 2018 Oct; 175():98-102. PubMed ID: 29908883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of corneal biomechanical parameters in myopes and emmetropes using the Corvis ST.
    Lee R; Chang RT; Wong IY; Lai JS; Lee JW; Singh K
    Clin Exp Optom; 2016 Mar; 99(2):157-62. PubMed ID: 26893029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the mechanical properties of the eye through the study of its vibrational modes.
    Aloy MÁ; Adsuara JE; Cerdá-Durán P; Obergaulinger M; Esteve-Taboada JJ; Ferrer-Blasco T; Montés-Micó R
    PLoS One; 2017; 12(9):e0183892. PubMed ID: 28922351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive finite element eye model for the compensation of biometric influences on acoustic tonometry.
    Osmers J; Kaiser N; Sorg M; Fischer A
    Comput Methods Programs Biomed; 2021 Mar; 200():105930. PubMed ID: 33486338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cataract surgery causes biomechanical alterations to the eye detectable by Corvis ST tonometry.
    Kato Y; Nakakura S; Asaoka R; Matsuya K; Fujio Y; Kiuchi Y;
    PLoS One; 2017; 12(2):e0171941. PubMed ID: 28222145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of diabetes mellitus on Corvis ST measurement process.
    Pérez-Rico C; Gutiérrez-Ortíz C; González-Mesa A; Zandueta AM; Moreno-Salgueiro A; Germain F
    Acta Ophthalmol; 2015 May; 93(3):e193-8. PubMed ID: 25270375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Orbital Biomechanical Properties in Patients with Thyroid Orbitopathy Using the Dynamic Scheimpflug Analyzer (Corvis ST).
    Leszczynska A; Moehler K; Spoerl E; Ramm L; Herber R; Pillunat LE; Terai N
    Curr Eye Res; 2018 Mar; 43(3):289-292. PubMed ID: 29166180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Relationship between Corneal Biomechanics, Macrostructure, and Optical Properties.
    Ávila FJ; Marcellán MC; Remón L
    J Imaging; 2021 Dec; 7(12):. PubMed ID: 34940747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness.
    Whitford C; Joda A; Jones S; Bao F; Rama P; Elsheikh A
    Eye Vis (Lond); 2016; 3():21. PubMed ID: 27512719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.