BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37207234)

  • 1.
    Wu M; Wang L; Wu H; Yang M; He Z; Chen Y; Zhang H
    Front Immunol; 2023; 14():1158883. PubMed ID: 37207234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological inhibition of demethylzeylasteral on JAK-STAT signaling ameliorates vitiligo.
    Chang Y; Kang P; Cui T; Guo W; Zhang W; Du P; Yi X; Guo S; Gao T; Li C; Li S
    J Transl Med; 2023 Jul; 21(1):434. PubMed ID: 37403086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoimmune vitiligo does not require the ongoing priming of naive CD8 T cells for disease progression or associated protection against melanoma.
    Byrne KT; Zhang P; Steinberg SM; Turk MJ
    J Immunol; 2014 Feb; 192(4):1433-9. PubMed ID: 24403535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8⁺ T-cell accumulation in the skin.
    Harris JE; Harris TH; Weninger W; Wherry EJ; Hunter CA; Turka LA
    J Invest Dermatol; 2012 Jul; 132(7):1869-76. PubMed ID: 22297636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin-specific protease 34 in macrophages limits CD8 T cell-mediated onset of vitiligo in mice.
    Li H; Li X; Kong Y; Sun W
    Immunobiology; 2023 May; 228(3):152383. PubMed ID: 37043976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of circulating CD8+T cells expressing skin homing and cytotoxic molecules in active non-segmental vitiligo.
    Zhang BX; Lin M; Qi XY; Zhang RX; Wei ZD; Zhu J; Man MQ; Tu CX
    Eur J Dermatol; 2013; 23(3):331-8. PubMed ID: 23782916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A similar local immune and oxidative stress phenotype in vitiligo and halo nevus.
    Yang Y; Li S; Zhu G; Zhang Q; Wang G; Gao T; Li C; Wang L; Jian Z
    J Dermatol Sci; 2017 Jul; 87(1):50-59. PubMed ID: 28385330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1.
    Lang KS; Caroli CC; Muhm A; Wernet D; Moris A; Schittek B; Knauss-Scherwitz E; Stevanovic S; Rammensee HG; Garbe C
    J Invest Dermatol; 2001 Jun; 116(6):891-7. PubMed ID: 11407977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The therapeutic effects of EGCG on vitiligo.
    Zhu Y; Wang S; Lin F; Li Q; Xu A
    Fitoterapia; 2014 Dec; 99():243-51. PubMed ID: 25128425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanocyte-specific CD8+ T cells are associated with epidermal depigmentation in a novel mouse model of vitiligo.
    You S; Cho YH; Byun JS; Shin EC
    Clin Exp Immunol; 2013 Oct; 174(1):38-44. PubMed ID: 23711243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune modulatory effects of lenalidomide on the cultured peripheral blood mononuclear cells from vitiligo patients.
    Pervaiz N; Kaur H; Parsad D; Kumar R
    Dermatol Ther; 2020 Nov; 33(6):e14473. PubMed ID: 33124184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of Iron Overload on the Apoptosis and Function of Splenic CD8+ T Cells in Mice].
    Chen J; Zhao MF; Cao XL; Meng JX; Xing Y; He XY; Jin X; Xu P; Jiang YY
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Jun; 24(3):903-8. PubMed ID: 27342530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory T cells from active non-segmental vitiligo exhibit lower suppressive ability on CD8+CLA+ T cells.
    Lin M; Zhang BX; Shen N; Dong XJ; Zhang C; Qi XY; Zhu J; Li YZ; Man MQ; Tu CX
    Eur J Dermatol; 2014; 24(6):676-82. PubMed ID: 25335433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress drives CD8
    Li S; Zhu G; Yang Y; Jian Z; Guo S; Dai W; Shi Q; Ge R; Ma J; Liu L; Li K; Luan Q; Wang G; Gao T; Li C
    J Allergy Clin Immunol; 2017 Jul; 140(1):177-189.e9. PubMed ID: 27826097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased
    Giri PS; Bharti AH; Dwivedi M
    J Immunol Res; 2022; 2022():3426717. PubMed ID: 36157881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo.
    Wang XX; Wang QQ; Wu JQ; Jiang M; Chen L; Zhang CF; Xiang LH
    Br J Dermatol; 2016 Jun; 174(6):1318-26. PubMed ID: 26801009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin Interstitial Fluid and Plasma Multiplex Cytokine Analysis Reveals IFN-γ Signatures and Granzyme B as Useful Biomarker for Activity, Severity and Prognosis Assessment in Vitiligo.
    Ng CY; Chiu YC; Chan YP; Lin YJ; Chung PH; Chung WH; Ku CL
    Front Immunol; 2022; 13():872458. PubMed ID: 35464413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogenic Th2 Cytokine Profile Skewing by IFN-γ-Responding Vitiligo Fibroblasts via CCL2/CCL8.
    Jin R; Zhou M; Lin F; Xu W; Xu A
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Analysis of Cell Population Dynamics and Related Core Genes During Vitiligo Development.
    Zhang J; Yu S; Hu W; Wang M; Abudoureyimu D; Luo D; Li T; Long L; Zeng H; Cheng C; Lei Z; Teng J; Kang X
    Front Genet; 2021; 12():627092. PubMed ID: 33679890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased suppression of CD8
    Giri PS; Dwivedi M; Begum R
    Exp Dermatol; 2020 Aug; 29(8):759-775. PubMed ID: 32682346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.