BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37207298)

  • 1. Augmenting Expert Knowledge-Based Toxicity Alerts by Statistically Mined Molecular Fragments.
    Chakravarti S
    Chem Res Toxicol; 2023 Jun; 36(6):848-858. PubMed ID: 37207298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts.
    Chakravarti SK; Saiakhov RD; Klopman G
    J Chem Inf Model; 2012 Oct; 52(10):2609-18. PubMed ID: 22947043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing similarity between structural environments of mutagenicity alerts.
    Chakravarti SK; Saiakhov RD
    Mutagenesis; 2019 Mar; 34(1):55-65. PubMed ID: 30346583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational derivation of structural alerts from large toxicology data sets.
    Ahlberg E; Carlsson L; Boyer S
    J Chem Inf Model; 2014 Oct; 54(10):2945-52. PubMed ID: 25275755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenic potential and structural alerts of phytotoxins.
    Bassan A; Pavan M; Lo Piparo E
    Food Chem Toxicol; 2023 Mar; 173():113562. PubMed ID: 36563927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Different Methods for Identification of Structural Alerts Using Chemical Ames Mutagenicity Data Set as a Benchmark.
    Yang H; Li J; Wu Z; Li W; Liu G; Tang Y
    Chem Res Toxicol; 2017 Jun; 30(6):1355-1364. PubMed ID: 28485959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrapolation of in vitro structural alerts for mutagenicity to the in vivo endpoint.
    Tennant RE; Guesné SJ; Canipa S; Cayley A; Drewe WC; Honma M; Masumura K; Morita T; Stalford SA; Williams RV
    Mutagenesis; 2019 Mar; 34(1):111-121. PubMed ID: 30281100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the structural requirements for mutagencitiy, by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model.
    Serafimova R; Todorov M; Pavlov T; Kotov S; Jacob E; Aptula A; Mekenyan O
    Chem Res Toxicol; 2007 Apr; 20(4):662-76. PubMed ID: 17381132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and application of (Q)SAR models to predict chemical-induced in vitro chromosome aberrations.
    Hsu CW; Hewes KP; Stavitskaya L; Kruhlak NL
    Regul Toxicol Pharmacol; 2018 Nov; 99():274-288. PubMed ID: 30278198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment Prioritization on a Large Mutagenicity Dataset.
    Floris M; Raitano G; Medda R; Benfenati E
    Mol Inform; 2017 Jul; 36(7):. PubMed ID: 28032691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of in silico systems for ames test mutagenicity prediction: scope and limitations.
    Hillebrecht A; Muster W; Brigo A; Kansy M; Weiser T; Singer T
    Chem Res Toxicol; 2011 Jun; 24(6):843-54. PubMed ID: 21534561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A topological substructural molecular design approach for predicting mutagenesis end-points of alpha, beta-unsaturated carbonyl compounds.
    Pérez-Garrido A; Helguera AM; López GC; Cordeiro MN; Escudero AG
    Toxicology; 2010 Jan; 268(1-2):64-77. PubMed ID: 20004227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemistry-Wide Association Studies (CWAS): A Novel Framework for Identifying and Interpreting Structure-Activity Relationships.
    Low YS; Alves VM; Fourches D; Sedykh A; Andrade CH; Muratov EN; Rusyn I; Tropsha A
    J Chem Inf Model; 2018 Nov; 58(11):2203-2213. PubMed ID: 30376324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities.
    Valencia A; Prous J; Mora O; Sadrieh N; Valerio LG
    Toxicol Appl Pharmacol; 2013 Dec; 273(3):427-34. PubMed ID: 24090816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automating knowledge discovery for toxicity prediction using jumping emerging pattern mining.
    Sherhod R; Gillet VJ; Judson PN; Vessey JD
    J Chem Inf Model; 2012 Nov; 52(11):3074-87. PubMed ID: 23092382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative weight of evidence method for combining predictions of quantitative structure-activity relationship models.
    Tintó-Moliner A; Martin M
    SAR QSAR Environ Res; 2020 Apr; 31(4):261-279. PubMed ID: 32065534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. It's difficult, but important, to make negative predictions.
    Williams RV; Amberg A; Brigo A; Coquin L; Giddings A; Glowienke S; Greene N; Jolly R; Kemper R; O'Leary-Steele C; Parenty A; Spirkl HP; Stalford SA; Weiner SK; Wichard J
    Regul Toxicol Pharmacol; 2016 Apr; 76():79-86. PubMed ID: 26785392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project.
    Honma M; Kitazawa A; Cayley A; Williams RV; Barber C; Hanser T; Saiakhov R; Chakravarti S; Myatt GJ; Cross KP; Benfenati E; Raitano G; Mekenyan O; Petkov P; Bossa C; Benigni R; Battistelli CL; Giuliani A; Tcheremenskaia O; DeMeo C; Norinder U; Koga H; Jose C; Jeliazkova N; Kochev N; Paskaleva V; Yang C; Daga PR; Clark RD; Rathman J
    Mutagenesis; 2019 Mar; 34(1):3-16. PubMed ID: 30357358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbamates and ICH M7 classification: Making use of expert knowledge.
    Hemingway R; Fowkes A; Williams RV
    Regul Toxicol Pharmacol; 2017 Jun; 86():392-401. PubMed ID: 28385577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of published DNA reactivity alerts.
    Myden A; Guesne SJ; Cayley A; Williams RV
    Regul Toxicol Pharmacol; 2017 Aug; 88():77-86. PubMed ID: 28549899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.