These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37207385)
21. Emulsification of algal oil with soy lecithin improved DHA bioaccessibility but did not change overall in vitro digestibility. Lin X; Wang Q; Li W; Wright AJ Food Funct; 2014 Nov; 5(11):2913-21. PubMed ID: 25208938 [TBL] [Abstract][Full Text] [Related]
23. Preparation of Pickering emulsion gels based on κ-carrageenan and covalent crosslinking with EDC: Gelation mechanism and bioaccessibility of curcumin. Zhang B; Meng R; Li XL; Liu WJ; Cheng JS; Wang W Food Chem; 2021 Mar; 357():129726. PubMed ID: 33866240 [TBL] [Abstract][Full Text] [Related]
24. The impact of differently structured starch gels on the gastrointestinal fate of a curcumin-containing nanoemulsion. Qazi HJ; Ye A; Acevedo-Fani A; Singh H Food Funct; 2023 Aug; 14(17):7924-7937. PubMed ID: 37548382 [TBL] [Abstract][Full Text] [Related]
25. Development of pea protein nanoparticle/hydrolyzed rice glutelin fibril emulsion gels for encapsulation of curcumin. Kong Z; Li Z; Zhang L; Dai L; Wang Y; Sun Q; McClements DJ; Cheng Y; Zhang Z; Wang C; Xu X Int J Biol Macromol; 2024 Sep; 276(Pt 1):133640. PubMed ID: 38969047 [TBL] [Abstract][Full Text] [Related]
26. Intermolecular forces regulate in-vitro digestion of whey protein emulsion gels: Towards controlled lipid release. Shen X; Zheng H; Han M; Xu X; Li B; Guo Q J Colloid Interface Sci; 2023 Nov; 649():245-254. PubMed ID: 37348344 [TBL] [Abstract][Full Text] [Related]
27. Behaviour of whey protein emulsion gel during oral and gastric digestion: effect of droplet size. Guo Q; Ye A; Lad M; Dalgleish D; Singh H Soft Matter; 2014 Jun; 10(23):4173-83. PubMed ID: 24763731 [TBL] [Abstract][Full Text] [Related]
28. Impact of internal aqueous phase gelation on in vitro lipid digestion of epigallocatechin gallate-loaded W Wang W; Dong Z; Gu L; Wu B; Ji S; Xia Q J Food Sci; 2022 Oct; 87(10):4596-4608. PubMed ID: 36102167 [TBL] [Abstract][Full Text] [Related]
29. Influence of the Oil Structuring System on Lipid Hydrolysis and Bioaccessibility of Healthy Fatty Acids and Curcumin. Cofrades S; Gómez-Estaca J; Álvarez MD; Garcimartín A; Macho-González A; Benedí J; Pintado T Gels; 2023 Dec; 10(1):. PubMed ID: 38247756 [TBL] [Abstract][Full Text] [Related]
30. The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Helena de Abreu-Martins H; Artiga-Artigas M; Hilsdorf Piccoli R; Martín-Belloso O; Salvia-Trujillo L Food Chem; 2020 May; 311():126024. PubMed ID: 31855778 [TBL] [Abstract][Full Text] [Related]
31. Enhancing the Gastrointestinal Stability of Curcumin by Using Sodium Alginate-Based Nanoemulsions Containing Natural Emulsifiers. Teixé-Roig J; Oms-Oliu G; Odriozola-Serrano I; Martín-Belloso O Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613938 [TBL] [Abstract][Full Text] [Related]
32. Effects of charge distribution and degree of methylesterification of pectin emulsifier on bioaccessibility of curcumin incorporated in nanoemulsions. Park SY; Kim Y; Lee J; Cameron RG; Moon TW; Lee C; Mun S Int J Biol Macromol; 2024 Nov; 279(Pt 2):135189. PubMed ID: 39216585 [TBL] [Abstract][Full Text] [Related]
33. Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements. Zheng B; Peng S; Zhang X; McClements DJ J Agric Food Chem; 2018 Oct; 66(41):10816-10826. PubMed ID: 30252460 [TBL] [Abstract][Full Text] [Related]
34. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Sarkar A; Zhang S; Holmes M; Ettelaie R Adv Colloid Interface Sci; 2019 Jan; 263():195-211. PubMed ID: 30580767 [TBL] [Abstract][Full Text] [Related]
35. Study on the fabrication and in vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates. Pan Y; Xie QT; Zhu J; Li XM; Meng R; Zhang B; Chen HQ; Jin ZY Food Chem; 2019 Jul; 287():76-84. PubMed ID: 30857721 [TBL] [Abstract][Full Text] [Related]
36. Pre-duodenal lipid digestion of emulsions: Relevance, colloidal aspects and mechanistic insight. Infantes-Garcia MR; Verkempinck SHE; Carriére F; Hendrickx ME; Grauwet T Food Res Int; 2023 Jun; 168():112785. PubMed ID: 37120232 [TBL] [Abstract][Full Text] [Related]
37. Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. Chen X; McClements DJ; Zhu Y; Zou L; Li Z; Liu W; Cheng C; Gao H; Liu C J Agric Food Chem; 2018 Aug; 66(34):9087-9096. PubMed ID: 30102529 [TBL] [Abstract][Full Text] [Related]
38. Function emulsion gels prepared with carrageenan and zein/carboxymethyl dextrin stabilized emulsion as a new fat replacer in sausages. Li XL; Meng R; Xu BC; Zhang B; Cui B; Wu ZZ Food Chem; 2022 Sep; 389():133005. PubMed ID: 35490528 [TBL] [Abstract][Full Text] [Related]
39. Impact of the Simulated Gastric Digestion Methodology on the In Vitro Intestinal Proteolysis and Lipolysis of Emulsion Gels. Mella C; Quilaqueo M; Zúñiga RN; Troncoso E Foods; 2021 Feb; 10(2):. PubMed ID: 33546343 [TBL] [Abstract][Full Text] [Related]
40. Impact of plant extract on the gastrointestinal fate of nutraceutical-loaded nanoemulsions: phytic acid inhibits lipid digestion but enhances curcumin bioaccessibility. Pei Y; Ai T; Deng Z; Wu D; Liang H; McClements DJ; Li B Food Funct; 2019 Jun; 10(6):3344-3355. PubMed ID: 31095149 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]