These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37207664)

  • 1. Nature-inspired in-flight foldable rotorcraft.
    Bhardwaj H; Cai X; Win LST; Foong S
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37207664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and control of the first foldable single-actuator rotary wing micro aerial vehicle.
    Win SKH; Win LST; Sufiyan D; Foong S
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34723835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight.
    Bai S; He Q; Chirarattananon P
    Sci Robot; 2022 May; 7(66):eabg5913. PubMed ID: 35544606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gull-inspired joint-driven wing morphing allows adaptive longitudinal flight control.
    Harvey C; Baliga VB; Goates CD; Hunsaker DF; Inman DJ
    J R Soc Interface; 2021 Jun; 18(179):20210132. PubMed ID: 34102085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How ornithopters can perch autonomously on a branch.
    Zufferey R; Tormo-Barbero J; Feliu-Talegón D; Nekoo SR; Acosta JÁ; Ollero A
    Nat Commun; 2022 Dec; 13(1):7713. PubMed ID: 36513661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired morphing wings: mechanical design and wind tunnel experiments.
    Kilian L; Shahid F; Zhao JS; Nayeri CN
    Bioinspir Biomim; 2022 Jul; 17(4):. PubMed ID: 35609562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.
    Hassanalian M; Abdelmoula H; Ben Ayed S; Abdelkefi A
    J Therm Biol; 2017 May; 66():27-32. PubMed ID: 28477907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earwig-inspired foldable origami wing for micro air vehicle gliding.
    Ishiguro R; Kawasetsu T; Motoori Y; Paik J; Hosoda K
    Front Robot AI; 2023; 10():1255666. PubMed ID: 38023584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking.
    Fei F; Tu Z; Deng X
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic analysis of hummingbird-like hovering flight.
    Haider N; Shahzad A; Qadri MNM; Shams TA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations.
    Ravi S; Noda R; Gagliardi S; Kolomenskiy D; Combes S; Liu H; Biewener AA; Konow N
    Curr Biol; 2020 Jan; 30(2):187-195.e4. PubMed ID: 31902723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avian-inspired energy-harvesting from atmospheric phenomena for small UAVs.
    Gavrilovic N; Mohamed A; Marino M; Watkins S; Moschetta JM; Benard E
    Bioinspir Biomim; 2018 Nov; 14(1):016006. PubMed ID: 30457112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of passive wing pitching on flight control in a hovering model insect and flapping-wing micro air vehicle.
    Hao J; Wu J; Zhang Y
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34450611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feather-inspired flow control device across flight regimes.
    Othman AK; Nair NJ; Goza A; Wissa A
    Bioinspir Biomim; 2023 Oct; 18(6):. PubMed ID: 37714167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.