These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37207664)
21. Efficiency of lift production in flapping and gliding flight of swifts. Henningsson P; Hedenström A; Bomphrey RJ PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260 [TBL] [Abstract][Full Text] [Related]
22. Avian whiffling-inspired gaps provide an alternative method for roll control. Sigrest P; Inman DJ Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609597 [TBL] [Abstract][Full Text] [Related]
23. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement. Harne RL; Wang KW J R Soc Interface; 2015 Mar; 12(104):20141367. PubMed ID: 25608517 [TBL] [Abstract][Full Text] [Related]
24. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
25. Effects of wing damage and moult gaps on vertebrate flight performance. Hedenström A J Exp Biol; 2023 May; 226(9):. PubMed ID: 37132410 [TBL] [Abstract][Full Text] [Related]
26. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. Chang E; Matloff LY; Stowers AK; Lentink D Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590 [TBL] [Abstract][Full Text] [Related]
27. Wing flexibility reduces the energetic requirements of insect flight. Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414 [TBL] [Abstract][Full Text] [Related]
28. Inflected wings in flight: Uniform flow of stresses makes strong and light wings for stable flight. Mardanpour P; Izadpanahi E; Powell S; Rastkar S; Bejan A J Theor Biol; 2021 Jan; 508():110452. PubMed ID: 32828843 [TBL] [Abstract][Full Text] [Related]
29. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation. Tao Zhang ; Su S; Nguyen HT Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2107-2110. PubMed ID: 28268747 [TBL] [Abstract][Full Text] [Related]
30. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight. Lynch M; Mandadzhiev B; Wissa A Bioinspir Biomim; 2018 Mar; 13(3):036003. PubMed ID: 29388556 [TBL] [Abstract][Full Text] [Related]
31. Flow visualization and force measurement of the clapping effect in bio-inspired flying robots. Balta M; Deb D; Taha HE Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34584023 [TBL] [Abstract][Full Text] [Related]
32. Animal aloft: the origins of aerial behavior and flight. Dudley R; Yanoviak SP Integr Comp Biol; 2011 Dec; 51(6):926-36. PubMed ID: 21558180 [TBL] [Abstract][Full Text] [Related]
33. Review of insect-inspired wing micro air vehicle. Song F; Yan Y; Sun J Arthropod Struct Dev; 2023 Jan; 72():101225. PubMed ID: 36464577 [TBL] [Abstract][Full Text] [Related]
34. Wing rotation and the aerodynamic basis of insect flight. Dickinson MH; Lehmann FO; Sane SP Science; 1999 Jun; 284(5422):1954-60. PubMed ID: 10373107 [TBL] [Abstract][Full Text] [Related]
35. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot. Phan HV; Park HC Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535 [TBL] [Abstract][Full Text] [Related]
36. Pausing after clap reduces power required to fling wings apart at low Reynolds number. Kasoju VT; Santhanakrishnan A Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34034247 [TBL] [Abstract][Full Text] [Related]
37. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight. Phan HV; Truong QT; Park HC Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465 [TBL] [Abstract][Full Text] [Related]
38. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross. Hassanalian M; Throneberry G; Ali M; Ben Ayed S; Abdelkefi A J Therm Biol; 2018 Jan; 71():112-122. PubMed ID: 29301679 [TBL] [Abstract][Full Text] [Related]
39. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Phan HV; Kang T; Park HC Bioinspir Biomim; 2017 Apr; 12(3):036006. PubMed ID: 28281468 [TBL] [Abstract][Full Text] [Related]
40. Aerodynamic effects on an emulated hovering passerine with different wing-folding amplitudes. Chen WH; Yeh SI Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33836515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]