These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Differential Effect of Membrane Composition on the Pore-Forming Ability of Four Different Sea Anemone Actinoporins. García-Linares S; Rivera-de-Torre E; Morante K; Tsumoto K; Caaveiro JM; Gavilanes JG; Slotte JP; Martínez-Del-Pozo Á Biochemistry; 2016 Dec; 55(48):6630-6641. PubMed ID: 27933793 [TBL] [Abstract][Full Text] [Related]
3. Determination of the boundary lipids of sticholysins using tryptophan quenching. Palacios-Ortega J; Amigot-Sánchez R; García-Montoya C; Gorše A; Heras-Márquez D; García-Linares S; Martínez-Del-Pozo Á; Slotte JP Sci Rep; 2022 Oct; 12(1):17328. PubMed ID: 36243747 [TBL] [Abstract][Full Text] [Related]
4. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: their interaction with membranes. Alvarez C; Mancheño JM; Martínez D; Tejuca M; Pazos F; Lanio ME Toxicon; 2009 Dec; 54(8):1135-47. PubMed ID: 19268489 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional characterization of sticholysin III: A newly discovered actinoporin within the venom of the sea anemone Stichodactyla helianthus. Rivera-de-Torre E; Palacios-Ortega J; Garb JE; Slotte JP; Gavilanes JG; Martínez-Del-Pozo Á Arch Biochem Biophys; 2020 Aug; 689():108435. PubMed ID: 32485153 [TBL] [Abstract][Full Text] [Related]
6. The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. Ros U; Edwards MA; Epand RF; Lanio ME; Schreier S; Yip CM; Alvarez C; Epand RM Biochim Biophys Acta; 2013 Nov; 1828(11):2757-62. PubMed ID: 23954588 [TBL] [Abstract][Full Text] [Related]
7. 2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes. Maula T; Isaksson YJ; García-Linares S; Niinivehmas S; Pentikäinen OT; Kurita M; Yamaguchi S; Yamamoto T; Katsumura S; Gavilanes JG; Martínez-del-Pozo A; Slotte JP Biochim Biophys Acta; 2013 May; 1828(5):1390-5. PubMed ID: 23376330 [TBL] [Abstract][Full Text] [Related]
8. Sticholysin I-II oligomerization in the absence of membranes. García-Linares S; Amigot-Sánchez R; García-Montoya C; Heras-Márquez D; Alfonso C; Luque-Ortega JR; Gavilanes JG; Martínez-Del-Pozo Á; Palacios-Ortega J FEBS Lett; 2022 Apr; 596(8):1029-1036. PubMed ID: 35253212 [TBL] [Abstract][Full Text] [Related]
9. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451 [TBL] [Abstract][Full Text] [Related]
10. Sticholysin I-membrane interaction: an interplay between the presence of sphingomyelin and membrane fluidity. Pedrera L; Fanani ML; Ros U; Lanio ME; Maggio B; Alvarez C Biochim Biophys Acta; 2014 Jul; 1838(7):1752-9. PubMed ID: 24680653 [TBL] [Abstract][Full Text] [Related]
11. Differential binding and activity of the pore-forming toxin sticholysin II in model membranes containing diverse ceramide-derived lipids. Soto C; Del Valle A; Valiente PA; Ros U; Lanio ME; Hernández AM; Alvarez C Biochimie; 2017 Jul; 138():20-31. PubMed ID: 28396016 [TBL] [Abstract][Full Text] [Related]
12. The effect of cholesterol on the long-range network of interactions established among sea anemone Sticholysin II residues at the water-membrane interface. García-Linares S; Alm I; Maula T; Gavilanes JG; Slotte JP; Martínez-Del-Pozo Á Mar Drugs; 2015 Mar; 13(4):1647-65. PubMed ID: 25815890 [TBL] [Abstract][Full Text] [Related]
13. Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Rivera-de-Torre E; Palacios-Ortega J; Slotte JP; Gavilanes JG; Martínez-Del-Pozo Á; García-Linares S Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255441 [TBL] [Abstract][Full Text] [Related]
15. Architecture of the pore forming toxin sticholysin I in membranes. Hervis YP; Valle A; Dunkel S; Klare JP; Canet L; Lanio ME; Alvarez C; Pazos IF; Steinhoff HJ J Struct Biol; 2019 Oct; 208(1):30-42. PubMed ID: 31330179 [TBL] [Abstract][Full Text] [Related]
16. Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Palacios-Ortega J; García-Linares S; Rivera-de-Torre E; Gavilanes JG; Martínez-Del-Pozo Á; Slotte JP Biophys J; 2019 Jun; 116(12):2253-2265. PubMed ID: 31146924 [TBL] [Abstract][Full Text] [Related]
17. Role of the Tryptophan Residues in the Specific Interaction of the Sea Anemone Stichodactyla helianthus's Actinoporin Sticholysin II with Biological Membranes. García-Linares S; Maula T; Rivera-de-Torre E; Gavilanes JG; Slotte JP; Martínez-Del-Pozo Á Biochemistry; 2016 Nov; 55(46):6406-6420. PubMed ID: 27933775 [TBL] [Abstract][Full Text] [Related]
18. The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains. Pedrera L; Gomide AB; Sánchez RE; Ros U; Wilke N; Pazos F; Lanio ME; Itri R; Fanani ML; Alvarez C Langmuir; 2015 Sep; 31(36):9911-23. PubMed ID: 26273899 [TBL] [Abstract][Full Text] [Related]
20. One single salt bridge explains the different cytolytic activities shown by actinoporins sticholysin I and II from the venom of Stichodactyla helianthus. Rivera-de-Torre E; Palacios-Ortega J; García-Linares S; Gavilanes JG; Martínez-Del-Pozo Á Arch Biochem Biophys; 2017 Dec; 636():79-89. PubMed ID: 29138096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]