BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37208564)

  • 1. Coagulation-adsorption-oxidation for removing dyes from tannery wastewater.
    Mim S; Hashem MA; Payel S
    Environ Monit Assess; 2023 May; 195(6):695. PubMed ID: 37208564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization.
    Tang Y; Zhao J; Zhang Y; Zhou J; Shi B
    Chemosphere; 2021 Jan; 263():127987. PubMed ID: 32835980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights on the adsorption of phenol red dyes from synthetic wastewater using activated carbon/Fe
    Nobakht A; Jafari D; Esfandyari M
    Environ Monit Assess; 2023 Apr; 195(5):574. PubMed ID: 37060479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of alginate-kelp biochar composite hydrogel bead for dye removal.
    Ohemeng-Boahen G; Sewu DD; Woo SH
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33030-33042. PubMed ID: 31512135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar.
    Wu J; Yang J; Feng P; Huang G; Xu C; Lin B
    Chemosphere; 2020 May; 246():125734. PubMed ID: 31918084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel strategy of tannery sludge disposal - converting into biochar and reusing for Cr(VI) removal from tannery wastewater.
    Li Z; Yu D; Wang X; Liu X; Xu Z; Wang Y
    J Environ Sci (China); 2024 Apr; 138():637-649. PubMed ID: 38135427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep eutectic solvent as an efficient modifier of low-cost adsorbent for the removal of pharmaceuticals and dye.
    Lawal IA; Klink M; Ndungu P
    Environ Res; 2019 Dec; 179(Pt B):108837. PubMed ID: 31678732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of brilliant green dye using soybean straw-derived biochar: characterization, kinetics, thermodynamics and toxicity studies.
    Vyavahare G; Gurav R; Patil R; Sutar S; Jadhav P; Patil D; Yang YH; Tang J; Chavan C; Kale S; Jadhav J
    Environ Geochem Health; 2021 Aug; 43(8):2913-2926. PubMed ID: 33433782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Pb(II) from wastewater using a red mud modified rice-straw biochar: Influencing factors and reusability.
    Ahmed W; Mehmood S; Mahmood M; Ali S; Shakoor A; Núñez-Delgado A; Asghar RMA; Zhao H; Liu W; Li W
    Environ Pollut; 2023 Jun; 326():121405. PubMed ID: 36893974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies.
    Lim CK; Bay HH; Neoh CH; Aris A; Abdul Majid Z; Ibrahim Z
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7243-55. PubMed ID: 23653315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies.
    Mohrazi A; Ghasemi-Fasaei R
    Environ Monit Assess; 2023 Jan; 195(2):339. PubMed ID: 36705863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of Co(II) from aqueous solution using municipal sludge biochar modified by HNO
    Hu C; Zhang W; Chen Y; Ye N; YangJi D; Jia H; Shen Y; Song M
    Water Sci Technol; 2021 Jul; 84(1):251-261. PubMed ID: 34280168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy and mechanisms of δ-MnO
    Liu Y; Yuan W; Lin W; Yu S; Zhou L; Zeng Q; Wang J; Tao L; Dai Q; Liu J
    Environ Pollut; 2023 Oct; 335():122262. PubMed ID: 37506804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover.
    Bordoloi N; Dey MD; Mukhopadhyay R; Kataki R
    Water Sci Technol; 2018 Feb; 77(3-4):638-646. PubMed ID: 29431708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye.
    Gurav R; Bhatia SK; Choi TR; Choi YK; Kim HJ; Song HS; Lee SM; Lee Park S; Lee HS; Koh J; Jeon JM; Yoon JJ; Yang YH
    Chemosphere; 2021 Feb; 264(Pt 2):128539. PubMed ID: 33059279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from
    Gamboa DMP; Abatal M; Lima E; Franseschi FA; Ucán CA; Tariq R; Elías MAR; Vargas J
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel biochar from Manihot esculenta Crantz waste: application for the removal of Malachite Green from wastewater and optimization of the adsorption process.
    Beakou BH; El Hassani K; Houssaini MA; Belbahloul M; Oukani E; Anouar A
    Water Sci Technol; 2017 Sep; 76(5-6):1447-1456. PubMed ID: 28953471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of pozzolan and sugarcane bagasse derived geopolymer-biochar composites for methylene blue sequestration from aqueous medium.
    Dzoujo HT; Shikuku VO; Tome S; Akiri S; Kengne NM; Abdpour S; Janiak C; Etoh MA; Dina D
    J Environ Manage; 2022 Sep; 318():115533. PubMed ID: 35949096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced adsorption of Congo red dye onto polyethyleneimine-impregnated biochar derived from pine needles.
    Pandey D; Daverey A; Dutta K; Arunachalam K
    Environ Monit Assess; 2022 Oct; 194(12):880. PubMed ID: 36229618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye.
    Geethakarthi A; Phanikumar BR
    Environ Sci Pollut Res Int; 2012 Mar; 19(3):656-65. PubMed ID: 21909969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.