These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37208684)

  • 1. Integrating automated liquid handling in the separation workflow of extracellular vesicles enhances specificity and reproducibility.
    Van Dorpe S; Lippens L; Boiy R; Pinheiro C; Vergauwen G; Rappu P; Miinalainen I; Tummers P; Denys H; De Wever O; Hendrix A
    J Nanobiotechnology; 2023 May; 21(1):157. PubMed ID: 37208684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hands-Free Proteomic Profiling of Urinary Extracellular Vesicles with a High-Throughput Automated Workflow.
    Lee ZC; Hadisurya M; Luo Z; Li L; Tao WA
    J Am Soc Mass Spectrom; 2023 Nov; 34(11):2585-2593. PubMed ID: 37870912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization.
    Tulkens J; De Wever O; Hendrix A
    Nat Protoc; 2020 Jan; 15(1):40-67. PubMed ID: 31776460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine.
    Chen Y; Wu T; Zhu Z; Huang H; Zhang L; Goel A; Yang M; Wang X
    Semin Cancer Biol; 2021 Sep; 74():134-155. PubMed ID: 33766650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Best practice of identification and proteomic analysis of extracellular vesicles in human health and disease.
    Sódar BW; Kovács Á; Visnovitz T; Pállinger É; Vékey K; Pocsfalvi G; Turiák L; Buzás EI
    Expert Rev Proteomics; 2017 Dec; 14(12):1073-1090. PubMed ID: 29025360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of separation methods for extracellular vesicles from human and mouse brain tissues and human cerebrospinal fluids.
    Muraoka S; Lin W; Chen M; Hersh SW; Emili A; Xia W; Ikezu T
    Methods; 2020 May; 177():35-49. PubMed ID: 32035230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Proteomics Sample Preparation of Phosphatidylserine-Positive Extracellular Vesicles from Human Body Fluids.
    Muraoka S; Hirano M; Isoyama J; Ishida M; Tomonaga T; Adachi J
    ACS Omega; 2022 Nov; 7(45):41472-41479. PubMed ID: 36406491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood.
    Espejo C; Lyons B; Woods GM; Wilson R
    Methods Mol Biol; 2023; 2628():127-152. PubMed ID: 36781783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality Assessment and Comparison of Plasma-Derived Extracellular Vesicles Separated by Three Commercial Kits for Prostate Cancer Diagnosis.
    Pang B; Zhu Y; Ni J; Ruan J; Thompson J; Malouf D; Bucci J; Graham P; Li Y
    Int J Nanomedicine; 2020; 15():10241-10256. PubMed ID: 33364756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation and use of recombinant extracellular vesicles as biological reference material.
    Geeurickx E; Tulkens J; Dhondt B; Van Deun J; Lippens L; Vergauwen G; Heyrman E; De Sutter D; Gevaert K; Impens F; Miinalainen I; Van Bockstal PJ; De Beer T; Wauben MHM; Nolte-'t-Hoen ENM; Bloch K; Swinnen JV; van der Pol E; Nieuwland R; Braems G; Callewaert N; Mestdagh P; Vandesompele J; Denys H; Eyckerman S; De Wever O; Hendrix A
    Nat Commun; 2019 Jul; 10(1):3288. PubMed ID: 31337761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of Urinary Extracellular Vesicles for MicroRNA Biomarker Signature Development with Reference to MISEV Compliance.
    Reithmair M; Lindemann A; Mussack V; Pfaffl MW
    Methods Mol Biol; 2022; 2504():113-133. PubMed ID: 35467283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Proteomic SWATH-MS Workflow for Profiling Blood Extracellular Vesicles: A New Avenue for Glioma Tumour Surveillance.
    Hallal S; Azimi A; Wei H; Ho N; Lee MYT; Sim HW; Sy J; Shivalingam B; Buckland ME; Alexander-Kaufman KL
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic Profiling of Two Distinct Populations of Extracellular Vesicles Isolated from Human Seminal Plasma.
    Zhang X; Vos HR; Tao W; Stoorvogel W
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Pot Analytical Pipeline for Efficient and Sensitive Proteomic Analysis of Extracellular Vesicles.
    Liu YK; Wu X; Hadisurya M; Li L; Kaimakliotis H; Iliuk A; Tao WA
    J Proteome Res; 2023 Oct; 22(10):3301-3310. PubMed ID: 37702715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Toolbox To Standardize the Separation of Extracellular Vesicles and Lipoprotein Particles.
    Wang T; Turko IV
    J Proteome Res; 2018 Sep; 17(9):3104-3113. PubMed ID: 30080417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Multi-omics Grade Extracellular Vesicles by Density-Based Fractionation of Urine.
    Dhondt B; Lumen N; De Wever O; Hendrix A
    STAR Protoc; 2020 Sep; 1(2):100073. PubMed ID: 33111109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant extracellular vesicles as biological reference material for method development, data normalization and assessment of (pre-)analytical variables.
    Geeurickx E; Lippens L; Rappu P; De Geest BG; De Wever O; Hendrix A
    Nat Protoc; 2021 Feb; 16(2):603-633. PubMed ID: 33452501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular vesicles from biological fluids as potential markers in castration resistant prostate cancer.
    Choi WWY; Sánchez C; Li JJ; Dinarvand M; Adomat H; Ghaffari M; Khoja L; Vafaee F; Joshua AM; Chi KN; Guns EST; Hosseini-Beheshti E
    J Cancer Res Clin Oncol; 2023 Jul; 149(8):4701-4717. PubMed ID: 36222898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation.
    Zhang H; Cai YH; Ding Y; Zhang G; Liu Y; Sun J; Yang Y; Zhan Z; Iliuk A; Gu Z; Gu Y; Tao WA
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of viable peripheral blood mononuclear cells for biobanking using a robotized liquid handling workstation.
    Coppola L; Smaldone G; Cianflone A; Baselice S; Mirabelli P; Salvatore M
    J Transl Med; 2019 Nov; 17(1):371. PubMed ID: 31718655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.