These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37208971)

  • 1. Dioptric differences between clinically determined and metric-optimised refractions for adults with Down syndrome.
    Plaumann MD; Marsack JD; Benoit JS; Manny RE; Anderson HA
    Ophthalmic Physiol Opt; 2023 Sep; 43(5):1016-1028. PubMed ID: 37208971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?
    Hastings GD; Marsack JD; Nguyen LC; Cheng H; Applegate RA
    Ophthalmic Physiol Opt; 2017 May; 37(3):317-325. PubMed ID: 28370389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Acuity Outcomes in a Randomized Trial of Wavefront Metric-optimized Refractions in Adults with Down Syndrome.
    Anderson HA; Marsack JD; Benoit JS; Manny RE; Fern KD
    Optom Vis Sci; 2022 Jan; 99(1):58-66. PubMed ID: 34882603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Acuity Prediction Based on Different Refraction Types For Patients With Down Syndrome.
    Schneider LV; Mitchell GL; Marsack JD; Anderson HA
    Transl Vis Sci Technol; 2023 Sep; 12(9):11. PubMed ID: 37725391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The precision of wavefront refraction compared to subjective refraction and autorefraction.
    Pesudovs K; Parker KE; Cheng H; Applegate RA
    Optom Vis Sci; 2007 May; 84(5):387-92. PubMed ID: 17502821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical applications of personalising the neural components of visual image quality metrics for individual eyes.
    Hastings GD; Applegate RA; Schill AW; Hu C; Coates DR; Marsack JD
    Ophthalmic Physiol Opt; 2022 Mar; 42(2):272-282. PubMed ID: 34981848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study.
    Xu R; Bradley A; Thibos LN
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):444-55. PubMed ID: 23683093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Pupil Diameter on Objective Refraction Determination and Predicted Visual Acuity.
    Anderson HA; Ravikumar A; Benoit JS; Marsack JD
    Transl Vis Sci Technol; 2019 Nov; 8(6):32. PubMed ID: 31857915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method comparison and overview of refractive measurements in children: implications for myopia management.
    Müller J; Chen X; Ohlendorf A; Li L; Wahl S
    BMJ Open Ophthalmol; 2024 Mar; 9(1):. PubMed ID: 38429067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability in Objective Refraction for Persons with Down Syndrome.
    Marsack JD; Ravikumar A; Benoit JS; Anderson HA
    Optom Vis Sci; 2017 May; 94(5):574-581. PubMed ID: 28288016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of refractive error measures by the IRX3 aberrometer and autorefraction.
    McCullough SJ; Little JA; Breslin KM; Saunders KJ
    Optom Vis Sci; 2014 Oct; 91(10):1183-90. PubMed ID: 25192432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrometry Repeatability and Agreement with Autorefraction.
    Nguyen MT; Berntsen DA
    Optom Vis Sci; 2017 Sep; 94(9):886-893. PubMed ID: 28727613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilising a visual image quality metric to optimise spectacle prescriptions for eyes with keratoconus.
    Bell ELS; Hastings GD; Nguyen LC; Applegate RA; Marsack JD
    Ophthalmic Physiol Opt; 2023 Sep; 43(5):1007-1015. PubMed ID: 37226581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing habitual and i. Scription refractions.
    Putnam NM; Vasudevan B; Juarez A; Le CT; Sam K; de Gracia P; Hoppert A
    BMC Ophthalmol; 2019 Feb; 19(1):49. PubMed ID: 30755182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ametropia detection using a novel, compact wavefront autorefractor.
    Hernández CS; Gil A; Zaytouny A; Casares I; Poderoso J; de Lara A; Wehse A; Dave SR; Lim D; Lage E; Alejandre-Alba N
    Ophthalmic Physiol Opt; 2024 Mar; 44(2):311-320. PubMed ID: 38084770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metrics of optical quality derived from wave aberrations predict visual performance.
    Marsack JD; Thibos LN; Applegate RA
    J Vis; 2004 Apr; 4(4):322-8. PubMed ID: 15134479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences between wavefront and subjective refraction for infrared light.
    Teel DF; Jacobs RJ; Copland J; Neal DR; Thibos LN
    Optom Vis Sci; 2014 Oct; 91(10):1158-66. PubMed ID: 25148218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of the WASCA aberrometer refraction compared to manifest refraction in myopia.
    Reinstein DZ; Archer TJ; Couch D
    J Refract Surg; 2006 Mar; 22(3):268-74. PubMed ID: 16602316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image Quality Metric Derived Refractions Predicted to Improve Visual Acuity Beyond Habitual Refraction for Patients With Down Syndrome.
    Ravikumar A; Benoit JS; Marsack JD; Anderson HA
    Transl Vis Sci Technol; 2019 May; 8(3):20. PubMed ID: 31157125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison Between Refraction From an Adaptive Optics Visual Simulator and Clinical Refractions.
    Tabernero J; Otero C; Pardhan S
    Transl Vis Sci Technol; 2020 Jun; 9(7):23. PubMed ID: 32832229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.