These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37209094)

  • 1. Quantification of virus-infected cells using RNA FISH-Flow.
    Warren CJ; Barbachano-Guerrero A; Huey D; Yang Q; Worden-Sapper ER; Kuhn JH; Sawyer SL
    STAR Protoc; 2023 May; 4(2):102291. PubMed ID: 37209094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FISH-Flow to quantify nascent and mature ribosomal RNA in mouse and human cells.
    Antony C; Somers P; Gray EM; Pimkin M; Paralkar VR
    STAR Protoc; 2023 Sep; 4(3):102463. PubMed ID: 37481729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to detect infectious SARS-CoV-2 at low levels using in situ hybridization techniques.
    Cottignies-Calamarte A; He F; Zhu A; Real F; Bomsel M
    STAR Protoc; 2023 Dec; 4(4):102593. PubMed ID: 37738115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for comparing ribosomal levels in single bacterial cells at different growth stages using rRNA-FISH.
    Ciolli Mattioli C; Avraham R
    STAR Protoc; 2024 Sep; 5(3):103137. PubMed ID: 38878285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locked nucleic acid flow cytometry-fluorescence in situ hybridization (LNA flow-FISH): a method for bacterial small RNA detection.
    Robertson KL; Vora GJ
    J Vis Exp; 2012 Jan; (59):e3655. PubMed ID: 22258228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Mount RNA, Single-Molecule RNA (smRNA), and DNA Fluorescence In Situ Hybridization (FISH) in Mammalian Embryos.
    Canizo J; Vandal K; Biondic S; Petropoulos S
    Methods Mol Biol; 2024; 2767():307-320. PubMed ID: 37261674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol to detect RNAs from tissue sections in mice using Y-branched probe in situ hybridization.
    Wu Y; Yu CR
    STAR Protoc; 2022 Dec; 3(4):101686. PubMed ID: 36115025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting RNA-protein proximity at DNA double-strand breaks using combined fluorescence in situ hybridization with proximity ligation assay.
    Alagia A; Ketley RF; Gullerova M
    STAR Protoc; 2023 Mar; 4(1):102096. PubMed ID: 36825808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. exo-FISH: Protocol for detecting DNA breaks in repetitive regions of mammalian genomes.
    Saayman X; Graham E; Leung CWB; Esashi F
    STAR Protoc; 2023 Sep; 4(3):102487. PubMed ID: 37549036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry.
    Arrigucci R; Bushkin Y; Radford F; Lakehal K; Vir P; Pine R; Martin D; Sugarman J; Zhao Y; Yap GS; Lardizabal AA; Tyagi S; Gennaro ML
    Nat Protoc; 2017 Jun; 12(6):1245-1260. PubMed ID: 28518171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Sensitivity RNA FISH Analysis of Influenza Virus Genome Trafficking.
    Chou YY; Lionnet T
    Methods Mol Biol; 2018; 1836():195-211. PubMed ID: 30151575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment.
    Pereira AC; Tenreiro A; Cunha MV
    Sci Total Environ; 2022 Feb; 806(Pt 2):150682. PubMed ID: 34600998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and quantification of Epstein-Barr virus EBER1 in EBV-infected cells by fluorescent in situ hybridization and flow cytometry.
    Stowe RP; Cubbage ML; Sams CF; Pierson DL; Barrett AD
    J Virol Methods; 1998 Nov; 75(1):83-91. PubMed ID: 9820577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Click chemistry-based amplification and detection of endogenous RNA and DNA molecules in situ using clampFISH probes.
    Tavakoli S; Liu Y; Potts JL; Rouhanifard SH
    Methods Enzymol; 2020; 641():459-476. PubMed ID: 32713535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Inexpensive, Highly Labeled Probes for Fluorescence
    Sharma R; Meister P
    STAR Protoc; 2020 Jun; 1(1):100006. PubMed ID: 33111068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized protocol for single-molecule RNA FISH to visualize gene expression in
    Patel HP; Brouwer I; Lenstra TL
    STAR Protoc; 2021 Sep; 2(3):100647. PubMed ID: 34278333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-FISH Using Nucleic Acid Mimic Probes for the Detection of Bacteria.
    Azevedo AS; Rocha R; Dias N
    Methods Mol Biol; 2021; 2246():263-277. PubMed ID: 33576995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA replication profiling by molecular combing on single DNA fibers.
    Fu H; Aladjem MI
    STAR Protoc; 2022 Jun; 3(2):101290. PubMed ID: 35463463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Molecule RNA FISH in
    Duncan S; Olsson TSG; Hartley M; Dean C; Rosa S
    Bio Protoc; 2017 Apr; 7(8):e2240. PubMed ID: 34541233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-throughput DNA FISH protocol to visualize genome regions in human cells.
    Finn EH; Misteli T
    STAR Protoc; 2021 Sep; 2(3):100741. PubMed ID: 34458868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.