BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37209206)

  • 1. Overexpression of genes by stress-responsive promoters increases protein secretion in Saccharomyces cerevisiae.
    Xiao C; Xue S; Pan Y; Liu X; Huang M
    World J Microbiol Biotechnol; 2023 May; 39(8):203. PubMed ID: 37209206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast Synthetic Minimal Biosensors for Evaluating Protein Production.
    Peng K; Kroukamp H; Pretorius IS; Paulsen IT
    ACS Synth Biol; 2021 Jul; 10(7):1640-1650. PubMed ID: 34126009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored UPRE2 variants for dynamic gene regulation in yeast.
    Xiao C; Liu X; Pan Y; Li Y; Qin L; Yan Z; Feng Y; Zhao M; Huang M
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2315729121. PubMed ID: 38687789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae.
    Deng J; Wu Y; Zheng Z; Chen N; Luo X; Tang H; Keasling JD
    Microb Cell Fact; 2021 Oct; 20(1):202. PubMed ID: 34663323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol Bioeng; 2014 Jan; 111(1):144-51. PubMed ID: 23860786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condition-specific promoter activities in Saccharomyces cerevisiae.
    Xiong L; Zeng Y; Tang RQ; Alper HS; Bai FW; Zhao XQ
    Microb Cell Fact; 2018 Apr; 17(1):58. PubMed ID: 29631591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moderate Expression of
    Bao J; Huang M; Petranovic D; Nielsen J
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28476767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ER stress-induced transcriptional response reveals tolerance genes in yeast.
    Xie J; Xiao C; Pan Y; Xue S; Huang M
    Biotechnol J; 2024 Jun; 19(6):e2400082. PubMed ID: 38896412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response.
    Lin Y; Feng Y; Zheng L; Zhao M; Huang M
    Metab Eng; 2023 May; 77():152-161. PubMed ID: 37044356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoter-Library-Based Pathway Optimization for Efficient (2
    Gao S; Zhou H; Zhou J; Chen J
    J Agric Food Chem; 2020 Jun; 68(25):6884-6891. PubMed ID: 32458684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast.
    Qu Z; Zhang L; Zhu S; Yuan W; Hang J; Yin D; Tang X; Zheng J; Wang Z; Sun J
    Enzyme Microb Technol; 2020 Mar; 134():109485. PubMed ID: 32044032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae.
    Hou J; Tyo K; Liu Z; Petranovic D; Nielsen J
    Metab Eng; 2012 Mar; 14(2):120-7. PubMed ID: 22265825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum.
    de Ruijter JC; Koskela EV; Frey AD
    Microb Cell Fact; 2016 May; 15():87. PubMed ID: 27216259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast-Growing Saccharomyces cerevisiae Cells with a Constitutive Unfolded Protein Response and Their Potential for Lipidic Molecule Production.
    Nguyen PTM; Ishiwata-Kimata Y; Kimata Y
    Appl Environ Microbiol; 2022 Nov; 88(21):e0108322. PubMed ID: 36255243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae.
    Yuan J; Ching CB
    Microb Cell Fact; 2015 Mar; 14():38. PubMed ID: 25889168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Ho PW; Klein M; Futschik M; Nevoigt E
    FEMS Yeast Res; 2018 May; 18(3):. PubMed ID: 29481685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of ERAD bridging factor UBX2 modulates lipid metabolism and leads to ER stress-associated apoptosis during cadmium toxicity in Saccharomyces cerevisiae.
    Rajakumar S; Vijayakumar R; Abhishek A; Selvam GS; Nachiappan V
    Curr Genet; 2020 Oct; 66(5):1003-1017. PubMed ID: 32613295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.