These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 37209321)

  • 1. Single-cell RNA sequencing and kidney organoid differentiation.
    Uchimura K
    Clin Exp Nephrol; 2023 Jul; 27(7):585-592. PubMed ID: 37209321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Cell Sequencing and Kidney Organoids Generated from Pluripotent Stem Cells.
    Wu H; Humphreys BD
    Clin J Am Soc Nephrol; 2020 Apr; 15(4):550-556. PubMed ID: 31992574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Better Being Single? Omics Improves Kidney Organoids.
    Freedman BS
    Nephron; 2019; 141(2):128-132. PubMed ID: 30554217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Pluripotent Stem Cell-Derived Kidney Organoids with Improved Collecting Duct Maturation and Injury Modeling.
    Uchimura K; Wu H; Yoshimura Y; Humphreys BD
    Cell Rep; 2020 Dec; 33(11):108514. PubMed ID: 33326782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models.
    Kiaee K; Jodat YA; Bassous NJ; Matharu N; Shin SR
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of human kidney organoids from pluripotent stem cells.
    Cruz NM; Freedman BS
    Methods Cell Biol; 2019; 153():133-150. PubMed ID: 31395376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single-cell multiomic analysis of kidney organoid differentiation.
    Yoshimura Y; Muto Y; Ledru N; Wu H; Omachi K; Miner JH; Humphreys BD
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2219699120. PubMed ID: 37155865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels.
    Treacy NJ; Clerkin S; Davis JL; Kennedy C; Miller AF; Saiani A; Wychowaniec JK; Brougham DF; Crean J
    Bioact Mater; 2023 Mar; 21():142-156. PubMed ID: 36093324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kidney and organoid single-cell transcriptomics: the end of the beginning.
    Wilson PC; Humphreys BD
    Pediatr Nephrol; 2020 Feb; 35(2):191-197. PubMed ID: 30607565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling
    Liu E; Radmanesh B; Chung BH; Donnan MD; Yi D; Dadi A; Smith KD; Himmelfarb J; Li M; Freedman BS; Lin J
    Kidney360; 2020 Mar; 1(3):203-215. PubMed ID: 32656538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets.
    Wilson SB; Howden SE; Vanslambrouck JM; Dorison A; Alquicira-Hernandez J; Powell JE; Little MH
    Genome Med; 2022 Feb; 14(1):19. PubMed ID: 35189942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kidney organoids: Research in developmental biology and emerging applications.
    Shimizu T; Yamagata K; Osafune K
    Dev Growth Differ; 2021 Feb; 63(2):166-177. PubMed ID: 33569792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The myriad possibility of kidney organoids.
    Tian P; Lennon R
    Curr Opin Nephrol Hypertens; 2019 May; 28(3):211-218. PubMed ID: 30865165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the complexity of retina and pluripotent stem cell derived retinal organoids with single cell RNA sequencing: current progress, remaining challenges and future prospective.
    Zerti D; Collin J; Queen R; Cockell SJ; Lako M
    Curr Eye Res; 2020 Mar; 45(3):385-396. PubMed ID: 31794277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances and Challenges in Kidney Organoids.
    Sabapathy V; Costlow G; Venkatadri R; Dogan M; Kumar S; Sharma R
    Curr Stem Cell Res Ther; 2022; 17(3):226-236. PubMed ID: 34348631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.
    Czerniecki SM; Cruz NM; Harder JL; Menon R; Annis J; Otto EA; Gulieva RE; Islas LV; Kim YK; Tran LM; Martins TJ; Pippin JW; Fu H; Kretzler M; Shankland SJ; Himmelfarb J; Moon RT; Paragas N; Freedman BS
    Cell Stem Cell; 2018 Jun; 22(6):929-940.e4. PubMed ID: 29779890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina.
    Collin J; Queen R; Zerti D; Dorgau B; Hussain R; Coxhead J; Cockell S; Lako M
    Stem Cells; 2019 May; 37(5):593-598. PubMed ID: 30548510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell Sequencing and Organoids: A Powerful Combination for Modelling Organ Development and Diseases.
    Yin Y; Liu PY; Shi Y; Li P
    Rev Physiol Biochem Pharmacol; 2021; 179():189-210. PubMed ID: 33619630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building kidney organoids from pluripotent stem cells.
    Kobayashi A; Nishinakamura R
    Curr Opin Nephrol Hypertens; 2022 Jul; 31(4):367-373. PubMed ID: 35727170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.