These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3720940)

  • 1. [Pharmacokinetic research on bilignost (a mathematical physiological model)].
    Manuĭlov KK
    Farmakol Toksikol; 1986; 49(3):83-6. PubMed ID: 3720940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dynamics of bilignost distribution in different exposures of the body in white rats].
    Sergeev PV; Stankov VI; Belykh AG; Saksonov NP; Volkov AF
    Farmakol Toksikol; 1979; 42(4):383-9. PubMed ID: 477959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Pharmacokinetics of bilignost in the normal liver and in experimental pathology].
    Belykh AG
    Farmakol Toksikol; 1983; 46(3):105-8. PubMed ID: 6861981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Phenobarbital--an inducer of bilignost excretion with the bile in rats].
    Shimanovskiĭ NL; Bolotva EN; Volkov AF; Manuĭlov KK
    Farmakol Toksikol; 1988; 51(2):94-7. PubMed ID: 3378617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative analysis of single and infusion methods of bilignost administration].
    Belykh AG
    Farmakol Toksikol; 1982; 45(5):111-4. PubMed ID: 7140948
    [No Abstract]   [Full Text] [Related]  

  • 6. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically-based pharmacokinetic modeling of genistein in rats, Part I: Model development.
    Schlosser PM; Borghoff SJ; Coldham NG; David JA; Ghosh SK
    Risk Anal; 2006 Apr; 26(2):483-500. PubMed ID: 16573635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New information on the biotransport of the x-ray contrast substance, bilignost, in the hepatocyte].
    Sergeev PV; Mashkovtsev IuV; Obratsov NV
    Farmakol Toksikol; 1980; 43(2):180-4. PubMed ID: 7002597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The pharmacology of iotroxic acid, an new intravenous cholangiographic agent. I. Pharmacokinetics and radiology in animals].
    Speck U; Mützel W; Herz-Hübner U; Siefert HM
    Arzneimittelforschung; 1978; 28(11):2143-9. PubMed ID: 582919
    [No Abstract]   [Full Text] [Related]  

  • 11. Mathematical comparison between volume of distribution (V) and volume of distribution at steady-state (Vss) utilizing model-independent approach.
    Sobol E; Bialer M
    Biopharm Drug Dispos; 2004 Mar; 25(2):99-101. PubMed ID: 14872558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physiologically based pharmacokinetic model for 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) in the rat: tissue distribution and CYP1A induction.
    Kedderis LB; Mills JJ; Andersen ME; Birnbaum LS
    Toxicol Appl Pharmacol; 1993 Jul; 121(1):87-98. PubMed ID: 8337704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice.
    Kawamoto Y; Matsuyama W; Wada M; Hishikawa J; Chan MP; Nakayama A; Morisawa S
    Toxicol Appl Pharmacol; 2007 Oct; 224(2):182-91. PubMed ID: 17698157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Framework for evaluation of physiologically-based pharmacokinetic models for use in safety or risk assessment.
    Clark LH; Setzer RW; Barton HA
    Risk Anal; 2004 Dec; 24(6):1697-717. PubMed ID: 15660623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Utilization of a mathematical model of the pharmacokinetics of streptomycin for maintaining its concentration in the blood at a given level under conditions of intravenous infusion].
    Solov'ev VN; Firsov AA; Berezhinskaia VV; Fishman VM; Murav'eva SA
    Antibiotiki; 1974 Jun; 19(6):546-52. PubMed ID: 4850093
    [No Abstract]   [Full Text] [Related]  

  • 16. A physiologically based pharmacokinetic model for fluoride uptake by bone.
    Rao HV; Beliles RP; Whitford GM; Turner CH
    Regul Toxicol Pharmacol; 1995 Aug; 22(1):30-42. PubMed ID: 7494900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery.
    Lüpfert C; Reichel A
    Chem Biodivers; 2005 Nov; 2(11):1462-86. PubMed ID: 17191947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetic and pharmacodynamic modeling in vivo.
    Holford NH; Sheiner LB
    Crit Rev Bioeng; 1981; 5(4):273-322. PubMed ID: 7023829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical analysis for teratogenic sensitivity.
    Luecke RH; Wosilait WD; Young JF
    Teratology; 1997 Jun; 55(6):373-80. PubMed ID: 9294882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model studies for evaluating the neurobehavioral effects of complex hydrocarbon solvents III. PBPK modeling of white spirit constituents as a tool for integrating animal and human test data.
    Hissink AM; Krüse J; Kulig BM; Verwei M; Muijser H; Salmon F; Leenheers LH; Owen DE; Lammers JH; Freidig AP; McKee RH
    Neurotoxicology; 2007 Jul; 28(4):751-60. PubMed ID: 17493682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.