These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 37209687)

  • 1. Membranes in focus.
    Sezgin E; Levental I
    Biophys J; 2023 Jun; 122(11):E1-E4. PubMed ID: 37209687
    [No Abstract]   [Full Text] [Related]  

  • 2. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes.
    Ren Y; Fan L; Alkildani S; Liu L; Emmert S; Najman S; Rimashevskiy D; Schnettler R; Jung O; Xiong X; Barbeck M
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes.
    Liu G; Jin W; Xu N
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13384-13397. PubMed ID: 27364759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review.
    Formoso P; Pantuso E; De Filpo G; Nicoletta FP
    Membranes (Basel); 2017 Jul; 7(3):. PubMed ID: 28788091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Organic Framework-derived Composite Membranes for Water Treatment.
    Elmerhi N; Kumar S; Abi Jaoude M; Shetty D
    Chem Asian J; 2024 Jan; 19(2):e202300944. PubMed ID: 38078624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling.
    Mareev S; Gorobchenko A; Ivanov D; Anokhin D; Nikonenko V
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of Membranes for Helium Separation and Purification.
    Scholes CA; Ghosh UK
    Membranes (Basel); 2017 Feb; 7(1):. PubMed ID: 28218644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virus removal studies using nanofiltration membranes.
    O'Grady J; Losikoff A; Poiley J; Fickett D; Oliver C
    Dev Biol Stand; 1996; 88():319-26. PubMed ID: 9119156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication Techniques for Graphene Oxide-Based Molecular Separation Membranes: Towards Industrial Application.
    Kwon O; Choi Y; Choi E; Kim M; Woo YC; Kim DW
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advancement challenges with synthesis of biocompatible hemodialysis membranes.
    Zaman SU; Rafiq S; Ali A; Mehdi MS; Arshad A; Rehman SU; Muhammad N; Irfan M; Khurram MS; Zaman MKU; Hanbazazah AS; Lim HR; Show PL
    Chemosphere; 2022 Nov; 307(Pt 2):135626. PubMed ID: 35863415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Membranes: New Paradigms for High-Performance Separation Membranes.
    Cheng Y; Pu Y; Zhao D
    Chem Asian J; 2020 Aug; 15(15):2241-2270. PubMed ID: 32022455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology.
    Zhang S; Shen L; Deng H; Liu Q; You X; Yuan J; Jiang Z; Zhang S
    Adv Mater; 2022 May; 34(21):e2108457. PubMed ID: 35238090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene Oxide Membranes for Trace Hydrocarbon Contaminant Removal from Aqueous Solution.
    Pedico A; Fontana M; Bianco S; Kara S; Periolatto M; Carminati S; Pirri CF; Tresso E; Lamberti A
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33198157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Women's expectations and experiences of rupture of membranes and views of the potential use of reagent pads for detecting amniotic fluid.
    Spiby H; Borrelli S; Hughes AJ
    J Adv Nurs; 2017 Dec; 73(12):3041-3049. PubMed ID: 28637100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short Review on Porous Metal Membranes-Fabrication, Commercial Products, and Applications.
    Zhu B; Duke M; Dumée LF; Merenda A; des Ligneris E; Kong L; Hodgson PD; Gray S
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30231584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology.
    El-Beyrouthy J; Freeman E
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33925756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery.
    Fahr A; van Hoogevest P; May S; Bergstrand N; S Leigh ML
    Eur J Pharm Sci; 2005 Nov; 26(3-4):251-65. PubMed ID: 16112849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications.
    Rakhmatia YD; Ayukawa Y; Furuhashi A; Koyano K
    J Prosthodont Res; 2013 Jan; 57(1):3-14. PubMed ID: 23347794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How carbonic anhydrases and pH buffers facilitate the movement of carbon dioxide through biological membranes. Focus on "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes"; "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes"; and "Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes".
    Delpire E
    Am J Physiol Cell Physiol; 2014 Nov; 307(9):C788-90. PubMed ID: 24965588
    [No Abstract]   [Full Text] [Related]  

  • 20. Ceramic nanocomposite membranes and membrane fouling: A review.
    Li C; Sun W; Lu Z; Ao X; Li S
    Water Res; 2020 May; 175():115674. PubMed ID: 32200336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.