These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37209739)

  • 1. Spatial variability of arsenic fractionation in an abandoned arsenic-containing mine: Insights into soil particle sizes and quantitative mineralogical analysis.
    Ran H; Guo Z; Yi L; Xiao X; Xu R; Hu Z; Li T
    Sci Total Environ; 2023 Sep; 889():164145. PubMed ID: 37209739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk.
    Mensah AK; Marschner B; Shaheen SM; Wang J; Wang SL; Rinklebe J
    Environ Pollut; 2020 Jun; 261():114116. PubMed ID: 32220748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation.
    Fazle Bari ASM; Lamb D; Choppala G; Bolan N; Seshadri B; Rahman MA; Rahman MM
    J Hazard Mater; 2020 Nov; 399():123029. PubMed ID: 32937709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollution characteristics and environmental availability of toxic elements in soil from an abandoned arsenic-containing mine.
    Ran H; Deng X; Guo Z; Hu Z; An Y; Xiao X; Yi L; Xu R
    Chemosphere; 2022 Sep; 303(Pt 3):135189. PubMed ID: 35660392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valency distributions and geochemical fractions of arsenic and antimony in non-ferrous smelting soils with varying particle sizes.
    Zhao J; Luo Q; Ding L; Fu R; Zhang F; Cui C
    Ecotoxicol Environ Saf; 2022 Mar; 233():113312. PubMed ID: 35217308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP
    Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of trace elements in the clay size fraction of mining soils.
    Gomes P; Valente T; Braga MA; Grande JA; de la Torre ML
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6039-45. PubMed ID: 25712883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia.
    Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ
    Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health.
    Li H; Ji H; Shi C; Gao Y; Zhang Y; Xu X; Ding H; Tang L; Xing Y
    Chemosphere; 2017 Apr; 172():505-515. PubMed ID: 28104559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes.
    Perlatti F; Otero XL; Macias F; Ferreira TO
    Sci Total Environ; 2014 Dec; 500-501():91-102. PubMed ID: 25217748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK).
    Palumbo-Roe B; Klinck B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1251-61. PubMed ID: 17654145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK.
    Rieuwerts JS; Mighanetara K; Braungardt CB; Rollinson GK; Pirrie D; Azizi F
    Sci Total Environ; 2014 Feb; 472():226-34. PubMed ID: 24295744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction.
    Cruz-Hernández Y; Ruiz-García M; Villalobos M; Romero FM; Meza-Figueroa D; Garrido F; Hernández-Alvarez E; Pi-Puig T
    Environ Pollut; 2018 Jun; 237():154-165. PubMed ID: 29482021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain).
    Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio MI
    Environ Pollut; 2006 Jul; 142(2):217-26. PubMed ID: 16360254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: examples from copper mining refuse, Touro, Spain.
    Civeira M; Oliveira ML; Hower JC; Agudelo-Castañeda DM; Taffarel SR; Ramos CG; Kautzmann RM; Silva LF
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6535-45. PubMed ID: 26635221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of chemical fractionations and mobilization potentials for heavy metals in wastes and other solid matrices in a mining site in the inland Aegean Region in Turkey.
    Akinci G; Guven DE
    Environ Monit Assess; 2018 Dec; 191(1):25. PubMed ID: 30569332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.