These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37209863)

  • 1. Omics data for sampling thermodynamically feasible kinetic models.
    de Leeuw M; Matos MRA; Nielsen LK
    Metab Eng; 2023 Jul; 78():41-47. PubMed ID: 37209863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modelling of central carbon metabolism in Escherichia coli.
    Peskov K; Mogilevskaya E; Demin O
    FEBS J; 2012 Sep; 279(18):3374-85. PubMed ID: 22823407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data.
    Gopalakrishnan S; Dash S; Maranas C
    Metab Eng; 2020 Sep; 61():197-205. PubMed ID: 32173504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Which sets of elementary flux modes form thermodynamically feasible flux distributions?
    Gerstl MP; Jungreuthmayer C; Müller S; Zanghellini J
    FEBS J; 2016 May; 283(9):1782-94. PubMed ID: 26940826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations.
    Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V
    Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism.
    Mannan AA; Toya Y; Shimizu K; McFadden J; Kierzek AM; Rocco A
    PLoS One; 2015; 10(10):e0139507. PubMed ID: 26469081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of model complexity and size on metabolic flux distribution and control: case study in Escherichia coli.
    Hameri T; Fengos G; Hatzimanikatis V
    BMC Bioinformatics; 2021 Mar; 22(1):134. PubMed ID: 33743594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux.
    Tan Y; Rivera JG; Contador CA; Asenjo JA; Liao JC
    Metab Eng; 2011 Jan; 13(1):60-75. PubMed ID: 21075211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics integrated elementary flux mode analysis in large metabolic networks.
    Gerstl MP; Ruckerbauer DE; Mattanovich D; Jungreuthmayer C; Zanghellini J
    Sci Rep; 2015 Mar; 5():8930. PubMed ID: 25754258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions.
    Saa P; Nielsen LK
    PLoS Comput Biol; 2015 Apr; 11(4):e1004195. PubMed ID: 25874556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging ensembles of kinetic parameters to characterize observed metabolic phenotypes.
    Colombo R; Damiani C; Gilbert D; Heiner M; Mauri G; Pescini D
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):251. PubMed ID: 30066662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic modeling of the central carbon metabolism of Escherichia coli.
    Chassagnole C; Noisommit-Rizzi N; Schmid JW; Mauch K; Reuss M
    Biotechnol Bioeng; 2002 Jul; 79(1):53-73. PubMed ID: 17590932
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.