BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37210444)

  • 1. A scalable sparse neural network framework for rare cell type annotation of single-cell transcriptome data.
    Cheng Y; Fan X; Zhang J; Li Y
    Commun Biol; 2023 May; 6(1):545. PubMed ID: 37210444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network.
    Shao X; Yang H; Zhuang X; Liao J; Yang P; Cheng J; Lu X; Chen H; Fan X
    Nucleic Acids Res; 2021 Dec; 49(21):e122. PubMed ID: 34500471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.
    Guo Q; Yuan M; Zhang L; Deng M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline.
    Mikolajewicz N; Gacesa R; Aguilera-Uribe M; Brown KR; Moffat J; Han H
    Commun Biol; 2022 Oct; 5(1):1142. PubMed ID: 36307536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses.
    Wang J; Ma A; Chang Y; Gong J; Jiang Y; Qi R; Wang C; Fu H; Ma Q; Xu D
    Nat Commun; 2021 Mar; 12(1):1882. PubMed ID: 33767197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust and scalable graph neural network for accurate single-cell classification.
    Zeng Y; Wei Z; Pan Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35018408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis.
    Yang L; Ng YE; Sun H; Li Y; Chini LCS; LeBrasseur NK; Chen J; Zhang X
    BMC Biol; 2023 Oct; 21(1):223. PubMed ID: 37858214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network.
    Xu Z; Luo J; Xiong Z
    Bioinformatics; 2022 Nov; 38(22):5042-5048. PubMed ID: 36193998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scWECTA: A weighted ensemble classification framework for cell type assignment based on single cell transcriptome.
    Ren T; Huang S; Liu Q; Wang G
    Comput Biol Med; 2023 Jan; 152():106409. PubMed ID: 36512878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CellDepot: A Unified Repository for scRNA-seq Data and Visual Exploration.
    Lin D; Chen Y; Negi S; Cheng D; Ouyang Z; Sexton D; Li K; Zhang B
    J Mol Biol; 2022 Jun; 434(11):167425. PubMed ID: 34971674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data.
    Chen Y; Zhang S
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Effective Biclustering-Based Framework for Identifying Cell Subpopulations From scRNA-seq Data.
    Fang Q; Su D; Ng W; Feng J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2249-2260. PubMed ID: 32167906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scCAN: single-cell clustering using autoencoder and network fusion.
    Tran B; Tran D; Nguyen H; Ro S; Nguyen T
    Sci Rep; 2022 Jun; 12(1):10267. PubMed ID: 35715568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.