These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37210783)

  • 1. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment.
    He J; Li J; Gao Y; He X; Hao G
    J Hazard Mater; 2023 Aug; 456():131599. PubMed ID: 37210783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development Strategies and Prospects of Nano-based Smart Pesticide Formulation.
    Zhao X; Cui H; Wang Y; Sun C; Cui B; Zeng Z
    J Agric Food Chem; 2018 Jul; 66(26):6504-6512. PubMed ID: 28654254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-based smart pesticide formulations: Emerging opportunities for agriculture.
    Kumar S; Nehra M; Dilbaghi N; Marrazza G; Hassan AA; Kim KH
    J Control Release; 2019 Jan; 294():131-153. PubMed ID: 30552953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pesticide-loaded colloidal nanodelivery systems; preparation, characterization, and applications.
    Rehman A; Feng J; Qunyi T; Korma SA; Assadpour E; Usman M; Han W; Jafari SM
    Adv Colloid Interface Sci; 2021 Dec; 298():102552. PubMed ID: 34717205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies.
    Fu H; Tan P; Wang R; Li S; Liu H; Yang Y; Wu Z
    J Hazard Mater; 2022 Feb; 424(Pt B):127494. PubMed ID: 34687999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture.
    Miguel-Rojas C; PĂ©rez-de-Luque A
    Emerg Top Life Sci; 2023 Dec; 7(2):229-238. PubMed ID: 37921102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NCs-Delivered Pesticides: A Promising Candidate in Smart Agriculture.
    Hou Q; Zhang H; Bao L; Song Z; Liu C; Jiang Z; Zheng Y
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: A case study of the Voluntary Initiative in the UK.
    Garratt J; Kennedy A
    Pest Manag Sci; 2006 Dec; 62(12):1138-49. PubMed ID: 16981249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses.
    Lammoglia SK; Makowski D; Moeys J; Justes E; Barriuso E; Mamy L
    Sci Total Environ; 2017 Feb; 580():117-129. PubMed ID: 27986318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application.
    Nuruzzaman M; Rahman MM; Liu Y; Naidu R
    J Agric Food Chem; 2016 Feb; 64(7):1447-83. PubMed ID: 26730488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging nanobiotechnology in agriculture for the management of pesticide residues.
    Nehra M; Dilbaghi N; Marrazza G; Kaushik A; Sonne C; Kim KH; Kumar S
    J Hazard Mater; 2021 Jan; 401():123369. PubMed ID: 32763682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of environmental impact quotient model to Kumluca region, Turkey to determine environmental impacts of pesticides.
    Muhammetoglu A; Uslu B
    Water Sci Technol; 2007; 56(1):139-45. PubMed ID: 17711009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Developments and Challenges for Nanoscale Formulation of Botanical Pesticides for Use in Sustainable Agriculture.
    Luiz de Oliveira J; Ramos Campos EV; Fraceto LF
    J Agric Food Chem; 2018 Aug; 66(34):8898-8913. PubMed ID: 30075067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pesticide exposure, safety issues, and risk assessment indicators.
    Damalas CA; Eleftherohorinos IG
    Int J Environ Res Public Health; 2011 May; 8(5):1402-19. PubMed ID: 21655127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pesticide pestilence: Global scenario and recent advances in detection and degradation methods.
    Raj A; Dubey A; Malla MA; Kumar A
    J Environ Manage; 2023 Jul; 338():117680. PubMed ID: 37011532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil.
    Singh Y; Saxena MK
    Front Microbiol; 2022; 13():982611. PubMed ID: 36338076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotechnology in agriculture: Comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species.
    Zhang Y; Goss GG
    J Hazard Mater; 2022 Oct; 439():129559. PubMed ID: 35863222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated management of pesticides in an intensive agricultural area: a case study in Altinova, Turkey.
    Muhammetoglu A; Keyikoglu R; Cil A; Muhammetoglu H
    Environ Monit Assess; 2019 Aug; 191(9):599. PubMed ID: 31463725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment.
    Ryberg MW; Rosenbaum RK; Mosqueron L; Fantke P
    Chemosphere; 2018 Apr; 197():541-549. PubMed ID: 29407816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.