These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37210785)
1. Electron donation of Fe-Mn biochar for chromium(VI) immobilization: Key roles of embedded zero-valent iron clusters within iron-manganese oxide. Xu Z; Sun M; Xu X; Cao X; Ippolito JA; Mohanty SK; Ni BJ; Xu S; Tsang DCW J Hazard Mater; 2023 Aug; 456():131632. PubMed ID: 37210785 [TBL] [Abstract][Full Text] [Related]
2. Ball milling enhanced Cr(VI) removal of zero-valent iron biochar composites: Functional groups response and dominant reduction species. Zhang J; Xie L; Ma Q; Liu Y; Li J; Li Z; Li S; Zhang T Chemosphere; 2023 Jan; 311(Pt 2):137174. PubMed ID: 36368528 [TBL] [Abstract][Full Text] [Related]
3. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar. Xie L; Chen Q; Liu Y; Ma Q; Zhang J; Tang C; Duan G; Lin A; Zhang T; Li S Sci Total Environ; 2023 Dec; 905():167399. PubMed ID: 37793443 [TBL] [Abstract][Full Text] [Related]
4. Carbon matrix of biochar from biomass modeling components facilitates electron transfer from zero-valent iron to Cr(VI). Zhang J; Yang X; Shi J; Zhao M; Yin W; Wang X; Wang S; Zhang C Environ Sci Pollut Res Int; 2022 Apr; 29(16):24309-24321. PubMed ID: 34822090 [TBL] [Abstract][Full Text] [Related]
5. Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction. Zhou N; Gong K; Hu Q; Cheng X; Zhou J; Dong M; Wang N; Ding T; Qiu B; Guo Z Chemosphere; 2020 Mar; 242():125235. PubMed ID: 31698209 [TBL] [Abstract][Full Text] [Related]
6. An efficient, economical, and easy mass production biochar supported zero-valent iron composite derived from direct-reduction natural goethite for Cu(II) and Cr(VI) remove. Cai M; Zeng J; Chen Y; He P; Chen F; Wang X; Liang J; Gu C; Huang D; Zhang K; Gan M; Zhu J Chemosphere; 2021 Dec; 285():131539. PubMed ID: 34329142 [TBL] [Abstract][Full Text] [Related]
7. Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation. Xu Z; Wan Z; Sun Y; Gao B; Hou D; Cao X; Komárek M; Ok YS; Tsang DCW J Hazard Mater; 2022 May; 430():128479. PubMed ID: 35739664 [TBL] [Abstract][Full Text] [Related]
8. Screening for the action mechanisms of Fe and Ni in the reduction of Cr(VI) by Fe/Ni nanoparticles. Ruan X; Liu H; Ning X; Zhao D; Fan X Sci Total Environ; 2020 May; 715():136822. PubMed ID: 32023522 [TBL] [Abstract][Full Text] [Related]
9. One-step strategy for efficient Cr(VI) removal via phytate modified zero-valent iron: Accelerated electron transfer and enhanced coordination effect. Gan R; Ye Y; Zhan Z; Zhang Q; Deng Y; Liu Y; Li H; Wan J; Pei X; Li Q; Pan F J Hazard Mater; 2024 Mar; 466():133636. PubMed ID: 38309166 [TBL] [Abstract][Full Text] [Related]
10. Efficient Fe(III)/Fe(II) cycling mediated by L-cysteine functionalized zero-valent iron for enhancing Cr(VI) removal. Zhou F; Liu Q; Qin Y; Liu W; Zhang L J Hazard Mater; 2023 Aug; 456():131717. PubMed ID: 37245369 [TBL] [Abstract][Full Text] [Related]
11. Removal of tetracycline by biochar-supported biogenetic sulfidated zero valent iron: Kinetics, pathways and mechanism. Wang A; Hou J; Feng Y; Wu J; Miao L Water Res; 2022 Oct; 225():119168. PubMed ID: 36183543 [TBL] [Abstract][Full Text] [Related]
12. Improved Electron Efficiency of Zero-Valent Iron towards Cr(VI) Reduction after Sequestering in Al Wang C; Wang S; Song C; Liu H; Yang J Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886218 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Cr (VI) removal with Pb (II) presence by Fe Pei K; Liu T Environ Technol; 2023 Jun; 44(15):2215-2229. PubMed ID: 34986747 [TBL] [Abstract][Full Text] [Related]
14. "In-situ synthesized" iron-based bimetal promotes efficient removal of Cr(VI) in by zero-valent iron-loaded hydroxyapatite. Yang W; Xi D; Li C; Yang Z; Lin Z; Si M J Hazard Mater; 2021 Oct; 420():126540. PubMed ID: 34252675 [TBL] [Abstract][Full Text] [Related]
15. Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron. Ruan Y; Zhang H; Yu Z; Diao Z; Song G; Su M; Hou L; Chen D; Wang S; Kong L J Hazard Mater; 2022 Feb; 424(Pt A):127119. PubMed ID: 34597926 [TBL] [Abstract][Full Text] [Related]
16. Pinewood outperformed bamboo as feedstock to prepare biochar-supported zero-valent iron for Cr Zhou M; Zhang C; Yuan Y; Mao X; Li Y; Wang N; Wang S; Wang X Environ Res; 2020 Aug; 187():109695. PubMed ID: 32480029 [TBL] [Abstract][Full Text] [Related]
17. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Chen SS; Cheng CY; Li CW; Chai PH; Chang YM J Hazard Mater; 2007 Apr; 142(1-2):362-7. PubMed ID: 16987595 [TBL] [Abstract][Full Text] [Related]
18. Enhanced removal of hexavalent chromium by lignosulfonate modified zero valent iron: Reaction kinetic, performance and mechanism. He K; Wang S; Liu Y; Cao Z; Yang L; He F Sci Total Environ; 2023 Jan; 857(Pt 1):159397. PubMed ID: 36240939 [TBL] [Abstract][Full Text] [Related]
19. Elemental sulfur generated in situ from Fe(III) and sulfide promotes sulfidation of microscale zero-valent iron for superior Cr(VI) removal. Dai Y; Duan L; Dong Y; Zhao W; Zhao S J Hazard Mater; 2022 Aug; 436():129256. PubMed ID: 35739775 [TBL] [Abstract][Full Text] [Related]
20. Recycling of waste aluminum scraps to fabricate sulfidated zero-valent iron-aluminum particles for enhanced chromate removal. Zhang Y; Zhang L; Zeng J; Xu S; Pan J; Huang W; Sun J; Jiang F J Environ Sci (China); 2024 Apr; 138():650-659. PubMed ID: 38135428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]