These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37210816)

  • 21. Extreme altitude changes between night and day during marathon flights of great snipes.
    Lindström Å; Alerstam T; Andersson A; Bäckman J; Bahlenberg P; Bom R; Ekblom R; Klaassen RHG; Korniluk M; Sjöberg S; Weber JKM
    Curr Biol; 2021 Aug; 31(15):3433-3439.e3. PubMed ID: 34197730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The urge to breed early: Similar responses to environmental conditions in short- and long-distance migrants during spring migration.
    Rüppel G; Hüppop O; Schmaljohann H; Brust V
    Ecol Evol; 2023 Jul; 13(7):e10223. PubMed ID: 37408622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex behaviour in complex terrain - Modelling bird migration in a high resolution wind field across mountainous terrain to simulate observed patterns.
    Aurbach A; Schmid B; Liechti F; Chokani N; Abhari R
    J Theor Biol; 2018 Oct; 454():126-138. PubMed ID: 29874554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal patterns and processes of migration in a long-distance migratory bird: energy or time minimization?
    Hedenström A; Hedh L
    Proc Biol Sci; 2024 Jun; 291(2024):20240624. PubMed ID: 38835274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus.
    Johnston DT; Thaxter CB; Boersch-Supan PH; Davies JG; Clewley GD; Green RMW; Shamoun-Baranes J; Cook ASCP; Burton NHK; Humphreys EM
    Mov Ecol; 2023 Oct; 11(1):66. PubMed ID: 37865783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-location of passive gear fisheries in offshore wind farms in the German EEZ of the North Sea: A first socio-economic scoping.
    Stelzenmüller V; Diekmann R; Bastardie F; Schulze T; Berkenhagen J; Kloppmann M; Krause G; Pogoda B; Buck BH; Kraus G
    J Environ Manage; 2016 Dec; 183(Pt 3):794-805. PubMed ID: 27658655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Projected changes in prevailing winds for transatlantic migratory birds under global warming.
    La Sorte FA; Fink D
    J Anim Ecol; 2017 Mar; 86(2):273-284. PubMed ID: 27973732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecological impacts of the expansion of offshore wind farms on trophic level species of marine food chain.
    Wang L; Wang B; Cen W; Xu R; Huang Y; Zhang X; Han Y; Zhang Y
    J Environ Sci (China); 2024 May; 139():226-244. PubMed ID: 38105050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Body condition explains migratory performance of a long-distance migrant.
    Duijns S; Niles LJ; Dey A; Aubry Y; Friis C; Koch S; Anderson AM; Smith PA
    Proc Biol Sci; 2017 Nov; 284(1866):. PubMed ID: 29093218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping seabird sensitivity to offshore wind farms.
    Bradbury G; Trinder M; Furness B; Banks AN; Caldow RW; Hume D
    PLoS One; 2014; 9(9):e106366. PubMed ID: 25210739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of low-level jets by migrating birds.
    Liechti F; Schaller E
    Naturwissenschaften; 1999 Nov; 86(11):549-51. PubMed ID: 10551952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flight speeds of swifts (Apus apus): seasonal differences smaller than expected.
    Henningsson P; Karlsson H; Bäckman J; Alerstam T; Hedenström A
    Proc Biol Sci; 2009 Jul; 276(1666):2395-401. PubMed ID: 19324733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of weather conditions on the flight of migrating black storks.
    Chevallier D; Handrich Y; Georges JY; Baillon F; Brossault P; Aurouet A; Le Maho Y; Massemin S
    Proc Biol Sci; 2010 Sep; 277(1695):2755-64. PubMed ID: 20427337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-altitude shorebird migration in the absence of topographical barriers: avoiding high air temperatures and searching for profitable winds.
    Senner NR; Stager M; Verhoeven MA; Cheviron ZA; Piersma T; Bouten W
    Proc Biol Sci; 2018 Jun; 285(1881):. PubMed ID: 30051848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal effects of wind conditions on migration patterns of soaring American white pelican.
    Gutierrez Illan J; Wang G; Cunningham FL; King DT
    PLoS One; 2017; 12(10):e0186948. PubMed ID: 29065188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential Effect of Low-Rise, Downcast Artificial Lights on Nocturnally Migrating Land Birds.
    Cabrera-Cruz SA; Larkin RP; Gimpel ME; Gruber JG; Zenzal TJ; Buler JJ
    Integr Comp Biol; 2021 Oct; 61(3):1216-1236. PubMed ID: 34240165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin.
    Gușatu LF; Menegon S; Depellegrin D; Zuidema C; Faaij A; Yamu C
    Sci Rep; 2021 May; 11(1):10125. PubMed ID: 33980905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flight altitude dynamics of migrating European nightjars across regions and seasons.
    Norevik G; Åkesson S; Andersson A; Bäckman J; Hedenström A
    J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34647575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the US Great Plains low-level jet in nocturnal migrant behavior.
    Wainwright CE; Stepanian PM; Horton KG
    Int J Biometeorol; 2016 Oct; 60(10):1531-1542. PubMed ID: 26872654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.