BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37210954)

  • 1. High-pressure pulses for Aspergillus niger spore inactivation in a model pharmaceutical lipid emulsion.
    Brito-Bazán E; Ascanio G; Iñiguez-Moreno M; Calderón-Santoyo M; Córdova-Aguilar MS; Brito-de la Fuente E; Ragazzo-Sánchez JA
    Int J Food Microbiol; 2023 Aug; 399():110255. PubMed ID: 37210954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High hydrostatic pressure-induced inactivation of bacterial spores.
    Sarker MR; Akhtar S; Torres JA; Paredes-Sabja D
    Crit Rev Microbiol; 2015 Feb; 41(1):18-26. PubMed ID: 23631742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of supercritical CO
    Gomez-Gomez A; Brito-de la Fuente E; Gallegos C; Garcia-Perez JV; Benedito J
    Ultrason Sonochem; 2021 Aug; 76():105636. PubMed ID: 34192660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock.
    Tribst AA; Franchi MA; Cristianini M; de Massaguer PR
    J Food Sci; 2009; 74(9):M509-14. PubMed ID: 20492122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing.
    Ahn J; Balasubramaniam VM; Yousef AE
    Int J Food Microbiol; 2007 Feb; 113(3):321-9. PubMed ID: 17196696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.
    Van Opstal I; Bagamboula CF; Vanmuysen SC; Wuytack EY; Michiels CW
    Int J Food Microbiol; 2004 Apr; 92(2):227-34. PubMed ID: 15109800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pre- or post-processing storage conditions on high-hydrostatic pressure inactivation of Vibrio parahaemolyticus and V. vulnificus in oysters.
    Ye M; Huang Y; Gurtler JB; Niemira BA; Sites JE; Chen H
    Int J Food Microbiol; 2013 May; 163(2-3):146-52. PubMed ID: 23545264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailing of thermal inactivation curve of Aspergillus niger spores.
    Fujikawa H; Itoh T
    Appl Environ Microbiol; 1996 Oct; 62(10):3745-9. PubMed ID: 8837430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.
    Evelyn ; Silva FVM
    Int J Food Microbiol; 2015 Dec; 214():129-136. PubMed ID: 26280285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing thermal inactivation to a combined process of moderate heat and high pressure: Effect on ascospores in strawberry puree.
    Timmermans R; Hayrapetyan H; Vollebregt M; Dijksterhuis J
    Int J Food Microbiol; 2020 Jul; 325():108629. PubMed ID: 32325344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince.
    Rajan S; Ahn J; Balasubramaniam VM; Yousef AE
    J Food Prot; 2006 Apr; 69(4):853-60. PubMed ID: 16629029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of small, acid-soluble proteins on spore resistance and germination under a combination of pressure and heat treatment.
    Lee JK; Movahedi S; Harding SE; Mackey BM; Waites WM
    J Food Prot; 2007 Sep; 70(9):2168-71. PubMed ID: 17900098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of capillary and test tube procedures for analysis of thermal inactivation kinetics of mold spores.
    Fujikawa H; Morozumi S; Smerage GH; Teixeira AA
    J Food Prot; 2000 Oct; 63(10):1404-9. PubMed ID: 11041141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of ultrasound in combination with heat and pressure for the inactivation of spore forming bacteria isolated from edible crab (Cancer pagurus).
    Condón-Abanto S; Arroyo C; Álvarez I; Condón S; Lyng JG
    Int J Food Microbiol; 2016 Apr; 223():9-16. PubMed ID: 26874861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat.
    Ye M; Huang Y; Chen H
    Food Microbiol; 2012 Oct; 32(1):179-84. PubMed ID: 22850390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the effect of high pressure on the inactivation kinetics of a pressure-resistant strain of Pediococcus damnosus in phosphate buffer and gilt-head seabream (Sparus aurata).
    Panagou EZ; Tassou CC; Manitsa C; Mallidis C
    J Appl Microbiol; 2007 Jun; 102(6):1499-507. PubMed ID: 17578414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation kinetics of three Listeria monocytogenes strains under high hydrostatic pressure.
    Van Boeijen IK; Moezelaar R; Abee T; Zwietering MH
    J Food Prot; 2008 Oct; 71(10):2007-13. PubMed ID: 18939745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation Mechanism of
    Hsiao YT; Chen BY; Huang HW; Wang CY
    Foodborne Pathog Dis; 2021 Feb; 18(2):123-130. PubMed ID: 33544050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.
    Maier MB; Lenz CA; Vogel RF
    PLoS One; 2017; 12(10):e0187023. PubMed ID: 29073204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.