These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 37211031)

  • 1. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions.
    Van Speybroeck V
    Philos Trans A Math Phys Eng Sci; 2023 Jul; 381(2250):20220239. PubMed ID: 37211031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials.
    Hoffman AEJ; Temmerman W; Campbell E; Damin AA; Lezcano-Gonzalez I; Beale AM; Bordiga S; Hofkens J; Van Speybroeck V
    J Chem Theory Comput; 2024 Jan; 20(2):513-531. PubMed ID: 38157404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials.
    Noordhoek K; Bartel CJ
    Nanoscale; 2024 Mar; 16(13):6365-6382. PubMed ID: 38470833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials.
    Chen BWJ; Zhang X; Zhang J
    Chem Sci; 2023 Aug; 14(31):8338-8354. PubMed ID: 37564405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations.
    Wang G; Wang C; Zhang X; Li Z; Zhou J; Sun Z
    iScience; 2024 May; 27(5):109673. PubMed ID: 38646181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities.
    Heinz H; Ramezani-Dakhel H
    Chem Soc Rev; 2016 Jan; 45(2):412-48. PubMed ID: 26750724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite.
    Lininger CN; Brady NW; West AC
    Acc Chem Res; 2018 Mar; 51(3):583-590. PubMed ID: 29498267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy.
    Moradifar P; Liu Y; Shi J; Siukola Thurston ML; Utzat H; van Driel TB; Lindenberg AM; Dionne JA
    Chem Rev; 2023 Dec; 123(23):12757-12794. PubMed ID: 37979189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems.
    Guan J; Lu Y; Sen K; Abdul Nasir J; Desmoutier AW; Hou Q; Zhang X; Logsdail AJ; Dutta G; Beale AM; Strange RW; Yong C; Sherwood P; Senn HM; Catlow CRA; Keal TW; Sokol AA
    Philos Trans A Math Phys Eng Sci; 2023 Jul; 381(2250):20220234. PubMed ID: 37211033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.
    Deringer VL; Caro MA; Csányi G
    Adv Mater; 2019 Nov; 31(46):e1902765. PubMed ID: 31486179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-doping studies to enhance the life and electro-chemo-mechanical properties of the LiMn
    Tyagi R; Srinivasan S
    Phys Chem Chem Phys; 2022 Aug; 24(31):18645-18666. PubMed ID: 35894829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.
    Sosso GC; Chen J; Cox SJ; Fitzner M; Pedevilla P; Zen A; Michaelides A
    Chem Rev; 2016 Jun; 116(12):7078-116. PubMed ID: 27228560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling atomic and nanoscale structure in the silicon-oxygen system through active machine learning.
    Erhard LC; Rohrer J; Albe K; Deringer VL
    Nat Commun; 2024 Mar; 15(1):1927. PubMed ID: 38431626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscopic features of charge generation in organic semiconductors.
    Savoie BM; Jackson NE; Chen LX; Marks TJ; Ratner MA
    Acc Chem Res; 2014 Nov; 47(11):3385-94. PubMed ID: 25051395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based
    Ko HY; Santra B; DiStasio RA
    J Chem Theory Comput; 2021 Dec; 17(12):7789-7813. PubMed ID: 34775753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on the size-dependent bulking, vibration and, wave propagation of nanostructures.
    Wang J; Yu Y; Zhao X; Sun J; Wang Y; Zhu H
    J Phys Condens Matter; 2023 Apr; 35(29):. PubMed ID: 36944254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.