BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 37211100)

  • 1. Enhanced bioelectroremediation of heavy metal contaminated groundwater through advancing a self-standing cathode.
    Ali J; Zheng C; Lyu T; Oladoja NA; Lu Y; An W; Yang Y
    Water Res; 2024 Jun; 256():121625. PubMed ID: 38640565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Biosynthesis of FeS Nanoparticles Boosts Current Generation in Bioelectrochemical Systems Through Efficient Electron Transfer.
    He Y; Fu Q; Li J; Zhang L; Zhu X; Liao Q
    Small; 2024 Jun; 20(25):e2309648. PubMed ID: 38234134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering extracellular electron transfer to promote simultaneous brewing wastewater treatment and chromium reduction.
    Wu D; Zhang B; Shi S; Tang R; Qiao C; Li T; Jia J; Yang M; Si X; Wang Y; Sun X; Xiao D; Li F; Song H
    J Hazard Mater; 2024 Mar; 465():133171. PubMed ID: 38147750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electroactive bacteria enrichment and facilitated extracellular electron transfer in microbial fuel cells via polydopamine coated graphene aerogel anode.
    Guo W; Chen Y; Wang J; Cui L; Yan Y
    Bioelectrochemistry; 2024 Jun; 160():108769. PubMed ID: 38955054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis.
    Ramanaiah SV; Cordas CM; Matias SC; Reddy MV; Leitão JH; Fonseca LP
    Biotechnol Rep (Amst); 2021 Dec; 32():e00693. PubMed ID: 34917493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desulfovibrio-induced gauzy FeS for efficient hexavalent chromium removal: The influence of SRB metabolism regulated by carbon source and electron carriers.
    Dong X; Zhai X; Yang J; Pei Y; Guan F; Chen Y; Duan J; Hou B
    J Colloid Interface Sci; 2024 Jun; 674():938-950. PubMed ID: 38959739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open air biocathode enables effective electricity generation with microbial fuel cells.
    Clauwaert P; Van der Ha D; Boon N; Verbeken K; Verhaege M; Rabaey K; Verstraete W
    Environ Sci Technol; 2007 Nov; 41(21):7564-9. PubMed ID: 18044542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reparation of nano-FeS by ultrasonic precipitation for treatment of acidic chromium-containing wastewater.
    Dai M; Di J; Zhang T; Li T; Dong Y; Bao S; Fu S
    Sci Rep; 2024 Jan; 14(1):211. PubMed ID: 38168529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of exogenous riboflavin or cytochrome addition on the cathodic reduction of Cr(VI) in microbial fuel cell with Shewanella putrefaciens.
    Ding J; Guo Y; Tang M; Zhou S
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):29185-29198. PubMed ID: 38568314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing biocathode denitrification performance with nano-Fe
    Feng H; Jin A; Yin X; Hong Z; Ding Y; Zhao N; Chen Y; Zhang Y
    Environ Res; 2024 Jan; 241():117641. PubMed ID: 37972808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature acclimation of electroactive microorganisms may be an effective strategy to enhance the toxicity sensing performance of microbial fuel cell sensors.
    Nong Y; Xu M; Liu B; Li J; He D; Li C; Lin P; Luo Y; Dang C; Fu J
    Water Res; 2024 Jun; 256():121566. PubMed ID: 38598948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms.
    Pinck S; Ostormujof LM; Teychené S; Erable B
    Microorganisms; 2020 Nov; 8(11):. PubMed ID: 33238493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved performance of Cr(vi)-reducing microbial fuel cells by nano-FeS hybridized biocathodes.
    Zhuang X; Tang S; Dong W; Xin F; Jia H; Wu X
    RSC Adv; 2023 Feb; 13(10):6768-6778. PubMed ID: 36860531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.
    Song TS; Jin Y; Bao J; Kang D; Xie J
    J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.
    Wu X; Zhu X; Song T; Zhang L; Jia H; Wei P
    Bioresour Technol; 2015 Mar; 180():185-91. PubMed ID: 25603528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation.
    Saran C; Purchase D; Saratale GD; Saratale RG; Romanholo Ferreira LF; Bilal M; Iqbal HMN; Hussain CM; Mulla SI; Bharagava RN
    Chemosphere; 2023 Jan; 312(Pt 1):137072. PubMed ID: 36336023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application.
    Jiang Y; Zeng RJ
    Bioresour Technol; 2019 Jan; 271():439-448. PubMed ID: 30292689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroactive microorganisms synthesizing iron sulfide nanoparticles for enhanced hexavalent chromium removal in microbial fuel cells.
    Fan M; Zhuang X; Gao Z; Lv Z; Dong W; Xin F; Chen Y; Jia H; Wu X
    Sci Total Environ; 2023 Sep; 889():164311. PubMed ID: 37211100
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.