BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37211125)

  • 1. Vehicle-cycle and life-cycle analysis of medium-duty and heavy-duty trucks in the United States.
    Iyer RK; Kelly JC; Elgowainy A
    Sci Total Environ; 2023 Sep; 891():164093. PubMed ID: 37211125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks.
    Breuer JL; Samsun RC; Stolten D; Peters R
    Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.
    Tong F; Jaramillo P; Azevedo IM
    Environ Sci Technol; 2015 Jun; 49(12):7123-33. PubMed ID: 25938939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.
    Lee DY; Thomas VM; Brown MA
    Environ Sci Technol; 2013 Jul; 47(14):8022-30. PubMed ID: 23786706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact assessment of crude oil mix, electricity generation mix, and vehicle technology on road freight emission reduction in China.
    Jiang Z; Yan R; Gong Z; Guan G
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27763-27781. PubMed ID: 36385332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Carbon Reduction Analysis of Life Cycle Prediction Assessment of Hydrogen Fuel Cell Vehicles:Considering Regional Features and Vehicle Type Differences].
    Ma J; Cai X; Zhang CM; Lan LB; Chen YS; Fu P
    Huan Jing Ke Xue; 2024 Feb; 45(2):744-754. PubMed ID: 38471914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Life Cycle Carbon Reduction Benefits of Electric Heavy-duty Truck to Replace Diesel Heavy-duty Truck].
    Xu YY; Gong DH; Huang ZG; Yang L
    Huan Jing Ke Xue; 2024 May; 45(5):3119-3128. PubMed ID: 38629572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-use activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks.
    Sandhu GS; Frey HC; Bartelt-Hunt S; Jones E
    J Air Waste Manag Assoc; 2015 Mar; 65(3):306-23. PubMed ID: 25947127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-saving and emission-reduction potential of fuel cell heavy-duty trucks in China during the fuel life cycle.
    Yan R; Jiang Z
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80559-80572. PubMed ID: 37296253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.
    Thiruvengadam A; Besch M; Carder D; Oshinuga A; Pasek R; Hogo H; Gautam M
    J Air Waste Manag Assoc; 2016 Nov; 66(11):1045-1060. PubMed ID: 26950051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-world activity, fuel use, and emissions of heavy-duty compressed natural gas refuse trucks.
    Sandhu GS; Frey HC; Bartelt-Hunt S; Jones E
    Sci Total Environ; 2021 Mar; 761():143323. PubMed ID: 33213912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idle emissions from medium heavy-duty diesel and gasoline trucks.
    Khan AB; Clark NN; Gautam M; Wayne WS; Thompson GJ; Lyons DW
    J Air Waste Manag Assoc; 2009 Mar; 59(3):354-9. PubMed ID: 19320273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks.
    Dallmann TR; Kirchstetter TW; DeMartini SJ; Harley RA
    Environ Sci Technol; 2013 Dec; 47(23):13873-81. PubMed ID: 24215572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Well-to-Wheels Analysis of Zero-Emission Plug-In Battery Electric Vehicle Technology for Medium- and Heavy-Duty Trucks.
    Liu X; Elgowainy A; Vijayagopal R; Wang M
    Environ Sci Technol; 2021 Jan; 55(1):538-546. PubMed ID: 33356189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.
    Kelly JC; Sullivan JL; Burnham A; Elgowainy A
    Environ Sci Technol; 2015 Oct; 49(20):12535-42. PubMed ID: 26393414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.