These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37211130)

  • 21. Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health.
    Heo S; Safder U; Yoo C
    Environ Pollut; 2019 Oct; 253():29-38. PubMed ID: 31302400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico methods in the discovery of endocrine disrupting chemicals.
    Vuorinen A; Odermatt A; Schuster D
    J Steroid Biochem Mol Biol; 2013 Sep; 137():18-26. PubMed ID: 23688835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.
    Mansouri K; Abdelaziz A; Rybacka A; Roncaglioni A; Tropsha A; Varnek A; Zakharov A; Worth A; Richard AM; Grulke CM; Trisciuzzi D; Fourches D; Horvath D; Benfenati E; Muratov E; Wedebye EB; Grisoni F; Mangiatordi GF; Incisivo GM; Hong H; Ng HW; Tetko IV; Balabin I; Kancherla J; Shen J; Burton J; Nicklaus M; Cassotti M; Nikolov NG; Nicolotti O; Andersson PL; Zang Q; Politi R; Beger RD; Todeschini R; Huang R; Farag S; Rosenberg SA; Slavov S; Hu X; Judson RS
    Environ Health Perspect; 2016 Jul; 124(7):1023-33. PubMed ID: 26908244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of predictive models for predicting binding affinity of endocrine disrupting chemicals to fish sex hormone-binding globulin.
    Liu H; Yang X; Yin C; Wei M; He X
    Ecotoxicol Environ Saf; 2017 Feb; 136():46-54. PubMed ID: 27816713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.
    Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS
    Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity.
    Sakhteman A; Failli M; Kublbeck J; Levonen AL; Fortino V
    Environ Int; 2021 Nov; 156():106751. PubMed ID: 34271427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes.
    Singh KP; Gupta S; Basant N; Mohan D
    Chem Res Toxicol; 2014 Sep; 27(9):1504-15. PubMed ID: 25167463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of endocrine-disrupting chemicals on placental development.
    Yan Y; Guo F; Liu K; Ding R; Wang Y
    Front Endocrinol (Lausanne); 2023; 14():1059854. PubMed ID: 36896182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action.
    Ankley GT; Bencic DC; Breen MS; Collette TW; Conolly RB; Denslow ND; Edwards SW; Ekman DR; Garcia-Reyero N; Jensen KM; Lazorchak JM; Martinović D; Miller DH; Perkins EJ; Orlando EF; Villeneuve DL; Wang RL; Watanabe KH
    Aquat Toxicol; 2009 May; 92(3):168-78. PubMed ID: 19261338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Environ Toxicol Pharmacol; 2020 Aug; 78():103396. PubMed ID: 32391796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. General Challenges and Recommendations for the Water Quality Criteria of Endocrine Disrupting Chemicals (EDCs).
    Liu D; Hong Y; Feng C; Yan Z; Bai Y; Xu Y
    Bull Environ Contam Toxicol; 2022 Jun; 108(6):995-1000. PubMed ID: 35322278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    J Toxicol Environ Health A; 2020 Jul; 83(13-14):485-494. PubMed ID: 32552445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fifteen years after "Wingspread"--environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go.
    Hotchkiss AK; Rider CV; Blystone CR; Wilson VS; Hartig PC; Ankley GT; Foster PM; Gray CL; Gray LE
    Toxicol Sci; 2008 Oct; 105(2):235-59. PubMed ID: 18281716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Possible relationship between endocrine disrupting chemicals and hormone dependent gynecologic cancers.
    Dogan S; Simsek T
    Med Hypotheses; 2016 Jul; 92():84-7. PubMed ID: 27241264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of chemical reproductive toxicity to aquatic species using a machine learning model: An application in an ecological risk assessment of the Yangtze River, China.
    Fan J; Huang G; Chi M; Shi Y; Jiang J; Feng C; Yan Z; Xu Z
    Sci Total Environ; 2021 Nov; 796():148901. PubMed ID: 34265613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Toxicol In Vitro; 2020 Sep; 67():104861. PubMed ID: 32360643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endocrine disrupting chemicals and bone.
    Turan S
    Best Pract Res Clin Endocrinol Metab; 2021 Sep; 35(5):101495. PubMed ID: 33618984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioremediation of Endocrine Disrupting Chemicals- Advancements and Challenges.
    Antony S; Antony S; Rebello S; George S; Biju DT; R R; Madhavan A; Binod P; Pandey A; Sindhu R; Awasthi MK
    Environ Res; 2022 Oct; 213():113509. PubMed ID: 35660566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.