These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37211568)

  • 21. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.
    Chen CP; Hwang RL; Shih WM
    Int J Biometeorol; 2014 Nov; 58(9):1941-50. PubMed ID: 24510118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions.
    Malik A; Bongers C; McBain B; Rey-Lescure O; Dear R; Capon A; Lenzen M; Jay O
    Lancet Planet Health; 2022 Apr; 6(4):e301-e309. PubMed ID: 35397218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regular and temporary occupants' perceptions of satisfaction in tertiary education buildings.
    Bortolini R; Forcada N
    Ergonomics; 2021 Jul; 64(7):926-942. PubMed ID: 33523767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of indoor thermal history on human thermal responses in cold environments of early winter.
    Wu Y; Yuan M; Li C; Cheng Y; Liu H
    J Therm Biol; 2019 Dec; 86():102448. PubMed ID: 31789236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating machine learning models to classify occupants' perceptions of their indoor environment and sleep quality from indoor air quality.
    Fritz H; Tang M; Kinney K; Nagy Z
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1381-1397. PubMed ID: 35939653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the gender differences in indoor thermal comfort perception for summer and winter seasons and comparison of comfort temperature prediction methods.
    Asif A; Zeeshan M; Khan SR; Sohail NF
    J Therm Biol; 2022 Dec; 110():103357. PubMed ID: 36462863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.
    Zhou X; Ouyang Q; Zhu Y; Feng C; Zhang X
    Indoor Air; 2014 Apr; 24(2):171-7. PubMed ID: 23980928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indoor human thermal adaptation: dynamic processes and weighting factors.
    Luo M; Cao B; Ouyang Q; Zhu Y
    Indoor Air; 2017 Mar; 27(2):273-281. PubMed ID: 27460524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature and indoor environments.
    Salthammer T; Morrison GC
    Indoor Air; 2022 May; 32(5):e13022. PubMed ID: 35622714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rethinking indoor thermal comfort in the era of rebound and pre-bound effect for the developing world: A systematic review.
    Malik J; Bardhan R; Banerji P
    Indoor Air; 2020 May; 30(3):377-395. PubMed ID: 32149411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.
    Salamone F; Belussi L; Danza L; Ghellere M; Meroni I
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of increased humidity on physiological responses, thermal comfort, perceived air quality, and Sick Building Syndrome symptoms at elevated indoor temperatures for subjects in a hot-humid climate.
    Zuo C; Luo L; Liu W
    Indoor Air; 2021 Mar; 31(2):524-540. PubMed ID: 32886843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments.
    Yu J; Ouyang Q; Zhu Y; Shen H; Cao G; Cui W
    Indoor Air; 2012 Apr; 22(2):110-8. PubMed ID: 21950966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Impact of Natural Ventilation Strategies in Ventilation Rates and Indoor Environmental Acoustics Using Sensor Measurement Data in Educational Buildings.
    de la Hoz-Torres ML; Aguilar AJ; Ruiz DP; Martínez-Aires MD
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.
    Lin TP; Hwang RL; Huang KT; Sun CY; Huang YC
    Int J Biometeorol; 2010 May; 54(3):221-30. PubMed ID: 19851789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indoor thermal comfort research using human participants: Guidelines and a checklist for experimental design.
    Lei TH; Lan L; Wang F
    J Therm Biol; 2023 Apr; 113():103506. PubMed ID: 37055124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indoor thermal factors and symptoms in office workers: findings from the US EPA BASE study.
    Mendell MJ; Mirer AG
    Indoor Air; 2009 Aug; 19(4):291-302. PubMed ID: 19302503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings.
    Wu PC; Li YY; Chiang CM; Huang CY; Lee CC; Li FC; Su HJ
    Indoor Air; 2005 Feb; 15(1):19-26. PubMed ID: 15660566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal performance of energy-efficient buildings for sustainable development.
    Vijayan DS; Sivasuriyan A; Patchamuthu P; Jayaseelan R
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51130-51142. PubMed ID: 34845641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Chinese thermal comfort dataset.
    Yang L; Zhao S; Zhai Y; Gao S; Wang F; Lian Z; Duanmu L; Zhang Y; Zhou X; Cao B; Wang Z; Yan H; Zhang H; Arens E; de Dear R
    Sci Data; 2023 Sep; 10(1):662. PubMed ID: 37770487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.