BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37211863)

  • 41. Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system.
    ALjahdali N; Carbonero F
    Crit Rev Food Sci Nutr; 2019; 59(3):474-487. PubMed ID: 28901784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids.
    Schalkwijk CG; Posthuma N; ten Brink HJ; ter Wee PM; Teerlink T
    Perit Dial Int; 1999; 19(4):325-33. PubMed ID: 10507813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression.
    Lin JA; Wu CH; Lu CC; Hsia SM; Yen GC
    Mol Nutr Food Res; 2016 Aug; 60(8):1850-64. PubMed ID: 26774083
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selected Maillard Reaction Products and Their Yeast Metabolites in Commercial Wines.
    Kertsch AL; Wagner J; Henle T
    J Agric Food Chem; 2023 Aug; 71(32):12300-12310. PubMed ID: 37530036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modification of chickpea cystatin by reactive dicarbonyl species: Glycation, oxidation and aggregation.
    Bhat SA; Bhat WF; Afsar M; Khan MS; Al-Bagmi MS; Bano B
    Arch Biochem Biophys; 2018 Jul; 650():103-115. PubMed ID: 29775569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic gastric digestion of a commercial whey protein concentrate†.
    Miralles B; Del Barrio R; Cueva C; Recio I; Amigo L
    J Sci Food Agric; 2018 Mar; 98(5):1873-1879. PubMed ID: 28898422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of in vitro digestion on free α-dicarbonyl compounds in balsamic vinegars.
    Papetti A; Mascherpa D; Marrubini G; Gazzani G
    J Food Sci; 2013 Apr; 78(4):C514-9. PubMed ID: 23464604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glyoxal-derived advanced glycation end-products, N
    Kang J; Jeong YJ; Ha SK; Lee HH; Lee KW
    Mol Biol Rep; 2023 Mar; 50(3):2511-2520. PubMed ID: 36609749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advanced Glycation End-Products and Their Effects on Gut Health.
    Phuong-Nguyen K; McNeill BA; Aston-Mourney K; Rivera LR
    Nutrients; 2023 Jan; 15(2):. PubMed ID: 36678276
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Immunomodulation by Processed Animal Feed: The Role of Maillard Reaction Products and Advanced Glycation End-Products (AGEs).
    Teodorowicz M; Hendriks WH; Wichers HJ; Savelkoul HFJ
    Front Immunol; 2018; 9():2088. PubMed ID: 30271411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro evaluation of anti-methylglyoxal/glyoxal activity of three phytosterols using glycated bovine serum albumin models.
    Sobhy R; Shen Q; Abd-Elrahman AA; Khalifa I; Liang H; Li B
    Steroids; 2020 Sep; 161():108678. PubMed ID: 32565405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation mechanism of AGEs in Maillard reaction model systems containing ascorbic acid.
    Liu L; Liu L; Xie J; Shen M
    Food Chem; 2022 Jun; 378():132108. PubMed ID: 35032811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins.
    Frye EB; Degenhardt TP; Thorpe SR; Baynes JW
    J Biol Chem; 1998 Jul; 273(30):18714-9. PubMed ID: 9668043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methylglyoxal-derived hydroimidazolone, MG-H1, increases food intake by altering tyramine signaling via the GATA transcription factor ELT-3 in
    Muthaiyan Shanmugam M; Chaudhuri J; Sellegounder D; Sahu AK; Guha S; Chamoli M; Hodge B; Bose N; Amber C; Farrera DO; Lithgow G; Sarpong R; Galligan JJ; Kapahi P
    Elife; 2023 Sep; 12():. PubMed ID: 37728328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In Vitro Infant Digestion of Whey Proteins Isolate-Lactose.
    Sabari S; Julmohammad N; Jahurul HAM; Matanjun P; Ab Wahab N
    Foods; 2023 Feb; 12(3):. PubMed ID: 36766193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dicarbonyl intermediates in the maillard reaction.
    Thornalley PJ
    Ann N Y Acad Sci; 2005 Jun; 1043():111-7. PubMed ID: 16037229
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides.
    Nooshkam M; Madadlou A
    Food Chem; 2016 Jun; 200():1-9. PubMed ID: 26830553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioremediation of a Common Product of Food Processing by a Human Gut Bacterium.
    Wolf AR; Wesener DA; Cheng J; Houston-Ludlam AN; Beller ZW; Hibberd MC; Giannone RJ; Peters SL; Hettich RL; Leyn SA; Rodionov DA; Osterman AL; Gordon JI
    Cell Host Microbe; 2019 Oct; 26(4):463-477.e8. PubMed ID: 31585844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methylglyoxal-Derived Advanced Glycation Endproducts Accumulate in Multiple Sclerosis Lesions.
    Wetzels S; Vanmierlo T; Scheijen JLJM; van Horssen J; Amor S; Somers V; Schalkwijk CG; Hendriks JJA; Wouters K
    Front Immunol; 2019; 10():855. PubMed ID: 31068938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Associations of dicarbonyl stress with complement activation: the CODAM study.
    Xin Y; Hertle E; van der Kallen CJH; Schalkwijk CG; Stehouwer CDA; van Greevenbroek MMJ
    Diabetologia; 2020 May; 63(5):1032-1042. PubMed ID: 31993713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.