These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37211947)

  • 1. Prediction of sodium binding energy on 2D VS
    Putungan DB; Su S; Gao L; Goyal A; Lin SH; Garg A
    Phys Chem Chem Phys; 2023 May; 25(21):15008-15014. PubMed ID: 37211947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.
    Putungan DB; Lin SH; Kuo JL
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18754-62. PubMed ID: 27373121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond theory-driven discovery: introducing hot random search and datum-derived structures.
    Pickard CJ
    Faraday Discuss; 2024 Sep; ():. PubMed ID: 39297223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data.
    Zilka M; Dudenko DV; Hughes CE; Williams PA; Sturniolo S; Franks WT; Pickard CJ; Yates JR; Harris KDM; Brown SP
    Phys Chem Chem Phys; 2017 Oct; 19(38):25949-25960. PubMed ID: 28944393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS).
    Liborio L; Sturniolo S; Jochym D
    J Chem Phys; 2018 Apr; 148(13):134114. PubMed ID: 29626903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying aspirin polymorphs from combined DFT-based crystal structure prediction and solid-state NMR.
    Mathew R; Uchman KA; Gkoura L; Pickard CJ; Baias M
    Magn Reson Chem; 2020 Nov; 58(11):1018-1025. PubMed ID: 31900955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network.
    Ke B; Nguyen H; Bui XN; Bui HB; Nguyen-Thoi T
    J Environ Manage; 2021 Sep; 293():112808. PubMed ID: 34034129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning.
    Bučko T; Gešvandtnerová M; Rocca D
    J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases.
    Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM
    J Cheminform; 2016; 8():24. PubMed ID: 27148408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accurate machine-learning calculator for optimization of Li-ion battery cathodes.
    Houchins G; Viswanathan V
    J Chem Phys; 2020 Aug; 153(5):054124. PubMed ID: 32770891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio random structure searching for battery cathode materials.
    Lu Z; Zhu B; Shires BWB; Scanlon DO; Pickard CJ
    J Chem Phys; 2021 May; 154(17):174111. PubMed ID: 34241052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure prediction of the solid forms of methanol: an ab initio random structure searching approach.
    Lin TJ; Hsing CR; Wei CM; Kuo JL
    Phys Chem Chem Phys; 2016 Jan; 18(4):2736-46. PubMed ID: 26725921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional Na
    Pham TD; Luong HD; Sato K; Shibutani Y; Dinh VA
    Phys Chem Chem Phys; 2019 Nov; 21(44):24326-24332. PubMed ID: 31508620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio study of sodium diffusion and adsorption on boron-doped graphyne as promising anode material in sodium-ion batteries.
    Nasrollahpour M; Vafaee M; Hosseini MR; Iravani H
    Phys Chem Chem Phys; 2018 Dec; 20(47):29889-29895. PubMed ID: 30468442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy.
    Sauer J
    Acc Chem Res; 2019 Dec; 52(12):3502-3510. PubMed ID: 31765121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio random structure searching.
    Pickard CJ; Needs RJ
    J Phys Condens Matter; 2011 Feb; 23(5):053201. PubMed ID: 21406903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy of machine learning and density functional theory calculations for predicting experimental Lewis base affinity and Lewis polybase binding atoms.
    Huynh H; Le K; Vu L; Nguyen T; Holcomb M; Forli S; Phan H
    J Comput Chem; 2024 Jul; 45(18):1552-1561. PubMed ID: 38500409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.