BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37212044)

  • 1. The decoupled evolution of the organellar genomes of Silene nutans leads to distinct roles in the speciation process.
    Postel Z; Sloan DB; Gallina S; Godé C; Schmitt E; Mangenot S; Drouard L; Varré JS; Touzet P
    New Phytol; 2023 Jul; 239(2):766-777. PubMed ID: 37212044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproductive isolation among lineages of Silene nutans (Caryophyllaceae): A potential involvement of plastid-nuclear incompatibilities.
    Postel Z; Poux C; Gallina S; Varré JS; Godé C; Schmitt E; Meyer E; Van Rossum F; Touzet P
    Mol Phylogenet Evol; 2022 Apr; 169():107436. PubMed ID: 35131426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentangling the effects of mating systems and mutation rates on cytoplasmic [correction of cytoplamic] diversity in gynodioecious Silene nutans and dioecious Silene otites.
    Lahiani E; Dufaÿ M; Castric V; Le Cadre S; Charlesworth D; Van Rossum F; Touzet P
    Heredity (Edinb); 2013 Aug; 111(2):157-64. PubMed ID: 23591518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paternal leakage of plastids rescues inter-lineage hybrids in Silene nutans.
    Postel Z; Van Rossum F; Godé C; Schmitt E; Touzet P
    Ann Bot; 2024 Apr; 133(3):427-434. PubMed ID: 38141228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry.
    Martin H; Touzet P; Dufay M; Godé C; Schmitt E; Lahiani E; Delph LF; Van Rossum F
    Evolution; 2017 Jun; 71(6):1519-1531. PubMed ID: 28384386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeographic pattern of range expansion provides evidence for cryptic species lineages in Silene nutans in Western Europe.
    Martin H; Touzet P; Van Rossum F; Delalande D; Arnaud JF
    Heredity (Edinb); 2016 Mar; 116(3):286-94. PubMed ID: 26647652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene.
    Sloan DB; Alverson AJ; Wu M; Palmer JD; Taylor DR
    Genome Biol Evol; 2012; 4(3):294-306. PubMed ID: 22247429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congruent population genetic structures and divergence histories in anther-smut fungi and their host plants Silene italica and the Silene nutans species complex.
    Hartmann FE; Snirc A; Cornille A; Godé C; Touzet P; Van Rossum F; Fournier E; Le Prieur S; Shykoff J; Giraud T
    Mol Ecol; 2020 Mar; 29(6):1154-1172. PubMed ID: 32068929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting de novo mitochondrial mutations in angiosperms with highly divergent evolutionary rates.
    Broz AK; Waneka G; Wu Z; Fernandes Gyorfy M; Sloan DB
    Genetics; 2021 May; 218(1):. PubMed ID: 33704433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteroplasmy and Patterns of Cytonuclear Linkage Disequilibrium in Wild Carrot.
    Ramsey AJ; McCauley DE; Mandel JR
    Integr Comp Biol; 2019 Oct; 59(4):1005-1015. PubMed ID: 31187130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paternal leakage and heteroplasmy of mitochondrial genomes in Silene vulgaris: evidence from experimental crosses.
    Bentley KE; Mandel JR; McCauley DE
    Genetics; 2010 Jul; 185(3):961-8. PubMed ID: 20421605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates.
    Sloan DB; Alverson AJ; Chuckalovcak JP; Wu M; McCauley DE; Palmer JD; Taylor DR
    PLoS Biol; 2012 Jan; 10(1):e1001241. PubMed ID: 22272183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The plastid and mitochondrial genomes of Eucalyptus grandis.
    Pinard D; Myburg AA; Mizrachi E
    BMC Genomics; 2019 Feb; 20(1):132. PubMed ID: 30760198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyploid plants take cytonuclear perturbations in stride.
    Sloan DB; Conover JL; Grover CE; Wendel JF; Sharbrough J
    Plant Cell; 2024 Mar; 36(4):829-839. PubMed ID: 38267606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytonuclear coevolution in a holoparasitic plant with highly disparate organellar genomes.
    Ceriotti LF; Gatica-Soria L; Sanchez-Puerta MV
    Plant Mol Biol; 2022 Aug; 109(6):673-688. PubMed ID: 35359176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonneutral evolution of organelle genes in Silene vulgaris.
    Houliston GJ; Olson MS
    Genetics; 2006 Dec; 174(4):1983-94. PubMed ID: 16980398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using plants to elucidate the mechanisms of cytonuclear co-evolution.
    Sloan DB
    New Phytol; 2015 Feb; 205(3):1040-6. PubMed ID: 25729802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discordant evolution of organellar genomes in peas (Pisum L.).
    Bogdanova VS; Shatskaya NV; Mglinets AV; Kosterin OE; Vasiliev GV
    Mol Phylogenet Evol; 2021 Jul; 160():107136. PubMed ID: 33684529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic determination of male sterility in gynodioecious Silene nutans.
    Garraud C; Brachi B; Dufay M; Touzet P; Shykoff JA
    Heredity (Edinb); 2011 May; 106(5):757-64. PubMed ID: 20808324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linkage disequilibrium and phylogenetic congruence between chloroplast and mitochondrial haplotypes in Silene vulgaris.
    Olson MS; McCauley DE
    Proc Biol Sci; 2000 Sep; 267(1454):1801-8. PubMed ID: 12233780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.