These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37212233)

  • 1. [Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics].
    Zhi R; Lu Y; Wang M; Li G; Deng Y
    Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):2081-2094. PubMed ID: 37212233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.
    Iwata T
    Angew Chem Int Ed Engl; 2015 Mar; 54(11):3210-5. PubMed ID: 25583677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of plastics: current scenario and future prospects for environmental safety.
    Ahmed T; Shahid M; Azeem F; Rasul I; Shah AA; Noman M; Hameed A; Manzoor N; Manzoor I; Muhammad S
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7287-7298. PubMed ID: 29332271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in microbial synthesis of bioplastic monomers.
    Liu J; Liu J; Guo L; Liu J; Chen X; Liu L; Gao C
    Adv Appl Microbiol; 2022; 119():35-81. PubMed ID: 35933117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered biosynthesis of biodegradable polymers.
    Jambunathan P; Zhang K
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1037-58. PubMed ID: 27260524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key issues for bio-based, biodegradable and compostable plastics governance.
    Nazareth MC; Marques MRC; Pinheiro LM; Castro ÍB
    J Environ Manage; 2022 Nov; 322():116074. PubMed ID: 36049309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem?
    Narancic T; O'Connor KE
    Microbiology (Reading); 2019 Feb; 165(2):129-137. PubMed ID: 30497540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the sustainable design and applications of biodegradable polymers.
    Rai P; Mehrotra S; Priya S; Gnansounou E; Sharma SK
    Bioresour Technol; 2021 Apr; 325():124739. PubMed ID: 33509643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advance in the degradation of biodegradable plastics in different environments].
    Jin Y; Cai F; Wang L; Song C; Jin W; Sun J; Liu G; Chen C
    Sheng Wu Gong Cheng Xue Bao; 2022 May; 38(5):1784-1808. PubMed ID: 35611729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the Ready Biodegradability of Biodegradable Plastics.
    Nabeoka R; Suzuki H; Akasaka Y; Ando N; Yoshida T
    Environ Toxicol Chem; 2021 Sep; 40(9):2443-2449. PubMed ID: 34003509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyester-based biodegradable plastics: an approach towards sustainable development.
    Satti SM; Shah AA
    Lett Appl Microbiol; 2020 Jun; 70(6):413-430. PubMed ID: 32086820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current state and future prospects of sensors for evaluating polymer biodegradability and sensors made from biodegradable polymers: A review.
    Koh LM; Khor SM
    Anal Chim Acta; 2022 Jul; 1217():339989. PubMed ID: 35690422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioplastics science from a policy vantage point.
    Philp JC; Bartsev A; Ritchie RJ; Baucher MA; Guy K
    N Biotechnol; 2013 Sep; 30(6):635-46. PubMed ID: 23220474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainability of biodegradable plastics: a review on social, economic, and environmental factors.
    Moshood TD; Nawanir G; Mahmud F
    Crit Rev Biotechnol; 2022 Sep; 42(6):892-912. PubMed ID: 34530658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synthesis, biodegradation and waste disposal of polylactic acid plastics: a review].
    Xie B; Bai R; Sun H; Zhou X; Dong W; Zhou J; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):1912-1929. PubMed ID: 37212221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress on bio-based production of dicarboxylic acids in yeast.
    Zhang X; Zhao Y; Liu Y; Wang J; Deng Y
    Appl Microbiol Biotechnol; 2020 May; 104(10):4259-4272. PubMed ID: 32215709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From microbes to ecosystems: a review of the ecological effects of biodegradable plastics.
    Courtene-Jones W; Martínez Rodríguez A; Handy RD
    Emerg Top Life Sci; 2022 Dec; 6(4):423-433. PubMed ID: 36069649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering for the production of dicarboxylic acids and diamines.
    Chae TU; Ahn JH; Ko YS; Kim JW; Lee JA; Lee EH; Lee SY
    Metab Eng; 2020 Mar; 58():2-16. PubMed ID: 30905694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution.
    Narancic T; Verstichel S; Reddy Chaganti S; Morales-Gamez L; Kenny ST; De Wilde B; Babu Padamati R; O'Connor KE
    Environ Sci Technol; 2018 Sep; 52(18):10441-10452. PubMed ID: 30156110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.