These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37212235)

  • 1. Room-temperature bonding of glass chips
    Kang Q; Wang C; Liu K; Kitamori T
    Lab Chip; 2023 Jun; 23(12):2710-2719. PubMed ID: 37212235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process.
    Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment.
    Xu Y; Wang C; Li L; Matsumoto N; Jang K; Dong Y; Mawatari K; Suga T; Kitamori T
    Lab Chip; 2013 Mar; 13(6):1048-52. PubMed ID: 23377319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices.
    Shoda K; Tanaka M; Mino K; Kazoe Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32854246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detachable glass micro/nanofluidic device.
    Ohta R; Mawatari K; Takeuchi T; Morikawa K; Kitamori T
    Biomicrofluidics; 2019 Mar; 13(2):024104. PubMed ID: 30915180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature intermediate layer bonding for microfluidic devices.
    Bart J; Tiggelaar R; Yang M; Schlautmann S; Zuilhof H; Gardeniers H
    Lab Chip; 2009 Dec; 9(24):3481-8. PubMed ID: 20024026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery.
    Funano SI; Ota N; Tanaka Y
    Lab Chip; 2021 Jun; 21(11):2244-2254. PubMed ID: 33908537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 degrees C.
    Howlader MM; Kibria MG; Zhang F; Kim MJ
    Talanta; 2010 Jul; 82(2):508-15. PubMed ID: 20602928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices.
    Allen PB; Chiu DT
    Anal Chem; 2008 Sep; 80(18):7153-7. PubMed ID: 18690699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures.
    Xu Y; Wu Q; Shimatani Y; Yamaguchi K
    Lab Chip; 2015 Oct; 15(19):3856-61. PubMed ID: 26278885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical surface modification of lithium disilicate needles of a silica-based ceramic after HF-etching and ultrasonic bath cleaning: Impact on the chemical bonding with silane.
    Poulon-Quintin A; Ogden E; Large A; Vaudescal M; Labrugère C; Bartala M; Bertrand C
    Dent Mater; 2021 May; 37(5):832-839. PubMed ID: 33640173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of silicon-tipped fiber-optic temperature sensors using aerogel-assisted glass soldering with precise laser heating.
    Sheng Q; Uddin N; Zhou B; Wang X; Han M
    Opt Lett; 2022 Jun; 47(11):2718-2721. PubMed ID: 35648913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.
    Datta A; Gangopadhyay S; Temkin H; Pu Q; Liu S
    Talanta; 2006 Jan; 68(3):659-65. PubMed ID: 18970372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Room-Temperature Bonding Method Based on Electrohydrodynamic Printing.
    Wu W; Yang X; Liu R; Yin Z; Wang DF; Zou H; Hu W; Li L
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1672-1677. PubMed ID: 33404432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes.
    Liu J; Wang L; Ouyang W; Wang W; Qin J; Xu Z; Xu S; Ge D; Wang L; Liu C; Wang L
    Biosens Bioelectron; 2015 Oct; 72():288-93. PubMed ID: 26000461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps.
    Roustaie F; Quednau S; Weißenborn F; Birlem O
    J Mater Eng Perform; 2021; 30(5):3173-3177. PubMed ID: 33776387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid bonding of Pyrex glass microchips.
    Akiyama Y; Morishima K; Kogi A; Kikutani Y; Tokeshi M; Kitamori T
    Electrophoresis; 2007 Mar; 28(6):994-1001. PubMed ID: 17370301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.