These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37212247)

  • 1. Broad-Spectrum Detection of Tetracyclines by Riboswitch-Based Cell-Free Expression Biosensing.
    Dong X; Cheng Q; Qi S; Qin M; Ding N; Sun Y; Xia Y; Zhang Y; Wang Z
    J Agric Food Chem; 2023 Jun; 71(25):9886-9895. PubMed ID: 37212247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free and Dye-free Fluorescent Sensing of Tetracyclines Using a Capture-Selected DNA Aptamer.
    Zhao Y; Ong S; Chen Y; Jimmy Huang PJ; Liu J
    Anal Chem; 2022 Jul; 94(28):10175-10182. PubMed ID: 35777074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal and pH-Dependent Aptamer Binding of Tetracyclines Enabling Highly Sensitive Fluorescence Sensing.
    Zhao Y; Gao B; Sun P; Liu J; Liu J
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aptamer array for discriminating tetracycline antibiotics based on binding-enhanced intrinsic fluorescence.
    Zhao Y; Gao B; Chen Y; Liu J
    Analyst; 2023 Mar; 148(7):1507-1513. PubMed ID: 36891736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Biosensor Designed to Distinguish Tetracyclines Derivatives by ssDNA Aptamer Labelled with Ferrocene.
    Malecka-Baturo K; Zaganiaris A; Grabowska I; Kurzątkowska-Adaszyńska K
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline.
    Kim YS; Kim JH; Kim IA; Lee SJ; Jurng J; Gu MB
    Biosens Bioelectron; 2010 Dec; 26(4):1644-9. PubMed ID: 20829027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in riboswitch-based biosensor as food samples detection tool.
    Dong X; Qi S; Khan IM; Sun Y; Zhang Y; Wang Z
    Compr Rev Food Sci Food Saf; 2023 Jan; 22(1):451-472. PubMed ID: 36511082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk.
    Kim CH; Lee LP; Min JR; Lim MW; Jeong SH
    Biosens Bioelectron; 2014 Jan; 51():426-30. PubMed ID: 24011458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast determination of the tetracyclines in milk samples by the aptamer biosensor.
    Zhang J; Zhang B; Wu Y; Jia S; Fan T; Zhang Z; Zhang C
    Analyst; 2010 Oct; 135(10):2706-10. PubMed ID: 20714519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR Green I.
    Yang C; Bie J; Zhang X; Yan C; Li H; Zhang M; Su R; Zhang X; Sun C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Sep; 202():382-388. PubMed ID: 29807336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell paper strip biosensors to semi-quantify tetracycline antibiotics in environmental matrices.
    Ma Z; Liu J; Sallach JB; Hu X; Gao Y
    Biosens Bioelectron; 2020 Nov; 168():112528. PubMed ID: 32890930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perovskite-based electrochemiluminescence aptasensor for tetracycline screening.
    Chen Y; Zhong X; Yang Q; Chen H; Hao N; Hu S
    Luminescence; 2024 Mar; 39(3):e4717. PubMed ID: 38504447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines.
    Taghdisi SM; Danesh NM; Ramezani M; Abnous K
    Biosens Bioelectron; 2016 Nov; 85():509-514. PubMed ID: 27213268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods.
    Tang Y; Huang X; Wang X; Wang C; Tao H; Wu Y
    Food Chem; 2022 Jan; 366():130560. PubMed ID: 34284183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity.
    Kwon YS; Ahmad Raston NH; Gu MB
    Chem Commun (Camb); 2014 Jan; 50(1):40-2. PubMed ID: 24185440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor.
    Jang S; Jang S; Im DK; Kang TJ; Oh MK; Jung GY
    ACS Synth Biol; 2019 Jun; 8(6):1276-1283. PubMed ID: 31074964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing fluorescent biosensors using circular permutations of riboswitches.
    Truong J; Hsieh YF; Truong L; Jia G; Hammond MC
    Methods; 2018 Jul; 143():102-109. PubMed ID: 29458090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free fluorescent biosensor based on specific aptamer-templated silver nanoclusters for the detection of tetracycline.
    Yang S; Li C; Zhan H; Liu R; Chen W; Wang X; Xu K
    J Nanobiotechnology; 2023 Jan; 21(1):22. PubMed ID: 36670418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-based cantilever array sensors for oxytetracycline detection.
    Hou H; Bai X; Xing C; Gu N; Zhang B; Tang J
    Anal Chem; 2013 Feb; 85(4):2010-4. PubMed ID: 23350586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor.
    Eberly JO; Mayo ML; Carr MR; Crocker FH; Indest KJ
    J Gen Appl Microbiol; 2019 Jul; 65(3):145-150. PubMed ID: 30700648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.