These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37212406)

  • 1. Exciton diffusion in amorphous organic semiconductors: Reducing simulation overheads with machine learning.
    Wechwithayakhlung C; Weal GR; Kaneko Y; Hume PA; Hodgkiss JM; Packwood DM
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians.
    Krämer M; Dohmen PM; Xie W; Holub D; Christensen AS; Elstner M
    J Chem Theory Comput; 2020 Jul; 16(7):4061-4070. PubMed ID: 32491856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet Exciton Diffusion in Organic Crystals Based on Marcus Transfer Rates.
    Stehr V; Fink RF; Engels B; Pflaum J; Deibel C
    J Chem Theory Comput; 2014 Mar; 10(3):1242-55. PubMed ID: 26580193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonadiabatic Simulation of Exciton Dynamics in Organic Semiconductors Using Neural Network-Based Frenkel Hamiltonian and Gradients.
    Ghalami F; Dohmen PM; Krämer M; Elstner M; Xie W
    J Chem Theory Comput; 2024 Jul; 20(14):6160-6174. PubMed ID: 38976696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembled Exciton Dynamics in Porphyrin Metal-Organic Framework Nanofilms.
    Gu C; Zhang H; Yu J; Shen Q; Luo G; Chen X; Xue P; Wang Z; Hu J
    Nano Lett; 2021 Jan; 21(2):1102-1107. PubMed ID: 33404245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing Dynamical Disorder for Charge Transport in Organic Semiconductors via Machine Learning.
    Reiser P; Konrad M; Fediai A; Léon S; Wenzel W; Friederich P
    J Chem Theory Comput; 2021 Jun; 17(6):3750-3759. PubMed ID: 33944566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy of singlet exciton diffusion in organic semiconductor crystals from ab initio approaches.
    Stehr V; Engels B; Deibel C; Fink RF
    J Chem Phys; 2014 Jan; 140(2):024503. PubMed ID: 24437892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping.
    Giovanni D; Righetto M; Zhang Q; Lim JWM; Ramesh S; Sum TC
    Light Sci Appl; 2021 Jan; 10(1):2. PubMed ID: 33386385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton/Charge-Transfer Electronic Couplings in Organic Semiconductors.
    Difley S; Van Voorhis T
    J Chem Theory Comput; 2011 Mar; 7(3):594-601. PubMed ID: 26596293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning exciton dynamics.
    Häse F; Valleau S; Pyzer-Knapp E; Aspuru-Guzik A
    Chem Sci; 2016 Aug; 7(8):5139-5147. PubMed ID: 30155164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of Crystallizable Organic Semiconductors with Machine Learning.
    Johnson HM; Gusev F; Dull JT; Seo Y; Priestley RD; Isayev O; Rand BP
    J Am Chem Soc; 2024 Aug; 146(31):21583-21590. PubMed ID: 39051486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ab initio exciton model for singlet fission.
    Li X; Parrish RM; Martínez TJ
    J Chem Phys; 2020 Nov; 153(18):184116. PubMed ID: 33187442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation.
    Hu D; Xie Y; Li X; Li L; Lan Z
    J Phys Chem Lett; 2018 Jun; 9(11):2725-2732. PubMed ID: 29732893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal machine learning framework for defect predictions in zinc blende semiconductors.
    Mannodi-Kanakkithodi A; Xiang X; Jacoby L; Biegaj R; Dunham ST; Gamelin DR; Chan MKY
    Patterns (N Y); 2022 Mar; 3(3):100450. PubMed ID: 35510195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors.
    Settels V; Schubert A; Tafipolski M; Liu W; Stehr V; Topczak AK; Pflaum J; Deibel C; Fink RF; Engel V; Engels B
    J Am Chem Soc; 2014 Jul; 136(26):9327-37. PubMed ID: 24909402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning Frenkel Hamiltonian parameters to accelerate simulations of exciton dynamics.
    Farahvash A; Lee CK; Sun Q; Shi L; Willard AP
    J Chem Phys; 2020 Aug; 153(7):074111. PubMed ID: 32828098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.
    Morrison AF; Herbert JM
    J Chem Phys; 2017 Jun; 146(22):224110. PubMed ID: 29166040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays.
    Berghuis AM; Tichauer RH; de Jong LMA; Sokolovskii I; Bai P; Ramezani M; Murai S; Groenhof G; Gómez Rivas J
    ACS Photonics; 2022 Jul; 9(7):2263-2272. PubMed ID: 35880071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics.
    Giannini S; Blumberger J
    Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.