These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37212410)

  • 1. An accurate interatomic potential for the TiAlNb ternary alloy developed by deep neural network learning method.
    Lu J; Wang J; Wan K; Chen Y; Wang H; Shi X
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy.
    Andolina CM; Williamson P; Saidi WA
    J Chem Phys; 2020 Apr; 152(15):154701. PubMed ID: 32321274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge optimized many-body potential for aluminum.
    Choudhary K; Liang T; Chernatynskiy A; Lu Z; Goyal A; Phillpot SR; Sinnott SB
    J Phys Condens Matter; 2015 Jan; 27(1):015003. PubMed ID: 25407244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method.
    Tang L; Yang ZJ; Wen TQ; Ho KM; Kramer MJ; Wang CZ
    Phys Chem Chem Phys; 2020 Sep; 22(33):18467-18479. PubMed ID: 32778859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison and Assessment of Different Interatomic Potentials for Simulation of Silicon Carbide.
    Yu J; Dai X; Li J; Luo A; Ouyang Y; Zhou Y
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles characterization of the anisotropy of theoretical strength and the stress-strain relation for a TiAl intermetallic compound.
    Zhou HB; Zhang Y; Liu YL; Kohyama M; Yin PG; Lu GH
    J Phys Condens Matter; 2009 Apr; 21(17):175407. PubMed ID: 21825422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a semi-empirical interatomic potential appropriate for the radiation defects in V-Ti-Ta-Nb high-entropy alloy.
    Qiu R; Chen Y; Liao X; Lin Y; Dou Y; He X; Yang W; Hu W; Deng H
    J Phys Condens Matter; 2022 Dec; 35(5):. PubMed ID: 36541500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method.
    Onat B; Durukanoğlu S
    J Phys Condens Matter; 2014 Jan; 26(3):035404. PubMed ID: 24351396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of Multicenter Bonding and Interstitial Elements on Twinned γ-TiAl Crystal.
    Fu Z; Wang J; Wang H; Lu X; He Y; Chen Y
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32344869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles study of the ternary effects on the plasticity of [Formula: see text]-TiAl crystals.
    Lee T; Kim SW; Kim JY; Ko WS; Ryu S
    Sci Rep; 2020 Dec; 10(1):21614. PubMed ID: 33303776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interatomic potential for uranium in a wide range of pressures and temperatures.
    Smirnova DE; Starikov SV; Stegailov VV
    J Phys Condens Matter; 2012 Jan; 24(1):015702. PubMed ID: 22133640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Set of Moment Tensor Potentials for Zirconium with Increasing Complexity.
    Luo Y; Meziere JA; Samolyuk GD; Hart GLW; Daymond MR; Béland LK
    J Chem Theory Comput; 2023 Oct; 19(19):6848-6856. PubMed ID: 37698988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacancy Energetics and Diffusivities in the Equiatomic Multielement Nb-Mo-Ta-W Alloy.
    Zhou X; He S; Marian J
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range empirical potential model: extension to hexagonal close-packed metals.
    Dai Y; Li JH; Liu BX
    J Phys Condens Matter; 2009 Sep; 21(38):385402. PubMed ID: 21832367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic investigation of the deformation mechanisms of a γ-TiAl single crystal.
    Jeong B; Kim J; Lee T; Kim SW; Ryu S
    Sci Rep; 2018 Oct; 8(1):15200. PubMed ID: 30315248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected relationship between interlayer distances and surface/cleavage energies in γ-TiAl: density functional study.
    Wang L; Shang JX; Wang FH; Zhang Y; Chroneos A
    J Phys Condens Matter; 2011 Jul; 23(26):265009. PubMed ID: 21673399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of proper energy barriers for atomistic kinetic Monte Carlo simulations on rigid lattice with chemical and strain field long-range effects using artificial neural networks.
    Castin N; Malerba L
    J Chem Phys; 2010 Feb; 132(7):074507. PubMed ID: 20170237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.