These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37212554)

  • 1. Microgel-Extracellular Matrix Composite Support for the Embedded 3D Printing of Human Neural Constructs.
    Kajtez J; Radeke C; Lind JU; Emnéus J
    J Vis Exp; 2023 May; (195):. PubMed ID: 37212554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs.
    Kajtez J; Wesseler MF; Birtele M; Khorasgani FR; Rylander Ottosson D; Heiskanen A; Kamperman T; Leijten J; Martínez-Serrano A; Larsen NB; Angelini TE; Parmar M; Lind JU; Emnéus J
    Adv Sci (Weinh); 2022 Sep; 9(25):e2201392. PubMed ID: 35712780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded Printing of Hydrogels and Watery Suspensions of Cells in Patterned Granular Baths.
    Trikalitis VD; Perea Paizal J; Rangel V; Stein F; Rouwkema J
    Tissue Eng Part C Methods; 2024 May; 30(5):206-216. PubMed ID: 38568935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation-crosslinked
    Zhang H; Luo Y; Hu Z; Chen M; Chen S; Yao Y; Yao J; Shao X; Wu K; Zhu Y; Fu J
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38198708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks.
    Flégeau K; Puiggali-Jou A; Zenobi-Wong M
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35483326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting.
    Ataie Z; Kheirabadi S; Zhang JW; Kedzierski A; Petrosky C; Jiang R; Vollberg C; Sheikhi A
    Small; 2022 Sep; 18(37):e2202390. PubMed ID: 35922399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels.
    Seymour AJ; Kilian D; Navarro RS; Hull SM; Heilshorn SC
    Biomater Sci; 2023 Nov; 11(23):7598-7615. PubMed ID: 37824082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments.
    Mazzocchi A; Devarasetty M; Huntwork R; Soker S; Skardal A
    Biofabrication; 2018 Oct; 11(1):015003. PubMed ID: 30270846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulable Supporting Baths for Embedded Printing of Soft Biomaterials with Variable Stiffness.
    Li Q; Ma L; Gao Z; Yin J; Liu P; Yang H; Shen L; Zhou H
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41695-41711. PubMed ID: 36070996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedded Bioprinting of Tissue-like Structures Using κ-Carrageenan Sub-Microgel Medium.
    Zhang H; Zhu T; Luo Y; Xu R; Li G; Hu Z; Cao X; Yao J; Chen Y; Zhu Y; Wu K
    J Vis Exp; 2024 May; (207):. PubMed ID: 38767380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspiration-assisted freeform bioprinting of mesenchymal stem cell spheroids within alginate microgels.
    Kim MH; Banerjee D; Celik N; Ozbolat IT
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jammed microgel growth medium prepared by flash-solidification of agarose for 3D cell culture and 3D bioprinting.
    Sreepadmanabh M; Ganesh M; Bhat R; Bhattacharjee T
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 37146614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review of the current ECM materials.
    Da Silva K; Kumar P; Choonara YE; du Toit LC; Pillay V
    J Biomed Mater Res A; 2020 Dec; 108(12):2324-2350. PubMed ID: 32363804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ceramic Omnidirectional Bioprinting in Cell-laden Suspensions for the Generation of Bone Analogs.
    Jalandhra G; Romanazzo S; Nemec S; Roohani I; Kilian KA
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 35993710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed tissue models: From hydrogels to biomedical applications.
    Cadamuro F; Nicotra F; Russo L
    J Control Release; 2023 Feb; 354():726-745. PubMed ID: 36682728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.