BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37212728)

  • 1. Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels.
    Szanto TG; Papp F; Zakany F; Varga Z; Deutsch C; Panyi G
    J Gen Physiol; 2023 Jul; 155(7):. PubMed ID: 37212728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.
    Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R
    J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross talk between activation and slow inactivation gates of Shaker potassium channels.
    Panyi G; Deutsch C
    J Gen Physiol; 2006 Nov; 128(5):547-59. PubMed ID: 17043151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation gate controls steady-state inactivation and recovery from inactivation in Shaker.
    Szanto TG; Zakany F; Papp F; Varga Z; Deutsch CJ; Panyi G
    J Gen Physiol; 2020 Aug; 152(8):. PubMed ID: 32442242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the cavity of the slow inactivated conformation of shaker potassium channels.
    Panyi G; Deutsch C
    J Gen Physiol; 2007 May; 129(5):403-18. PubMed ID: 17438120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the activation gate for small conductance Ca2+-activated K+ channels.
    Bruening-Wright A; Schumacher MA; Adelman JP; Maylie J
    J Neurosci; 2002 Aug; 22(15):6499-506. PubMed ID: 12151529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substituted cysteine scanning in D1-S6 of the sodium channel hNav1.4 alters kinetics and structural interactions of slow inactivation.
    Beard JM; Shockett PE; O'Reilly JP
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183129. PubMed ID: 31738900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent gating rearrangements in the intracellular T1-T1 interface of a K+ channel.
    Wang G; Covarrubias M
    J Gen Physiol; 2006 Apr; 127(4):391-400. PubMed ID: 16533897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of reporter cysteines.
    Becchetti A; Gamel K; Torre V
    J Gen Physiol; 1999 Sep; 114(3):377-92. PubMed ID: 10469728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein rearrangements underlying slow inactivation of the Shaker K+ channel.
    Loots E; Isacoff EY
    J Gen Physiol; 1998 Oct; 112(4):377-89. PubMed ID: 9758858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the coupling between activation and inactivation gates in K(+) channels.
    Cuello LG; Jogini V; Cortes DM; Pan AC; Gagnon DG; Dalmas O; Cordero-Morales JF; Chakrapani S; Roux B; Perozo E
    Nature; 2010 Jul; 466(7303):272-5. PubMed ID: 20613845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tail end of the s6 segment: role in permeation in shaker potassium channels.
    Ding S; Horn R
    J Gen Physiol; 2002 Jul; 120(1):87-97. PubMed ID: 12084778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of the activation gate of a voltage-gated Ca2+ channel.
    Xie C; Zhen XG; Yang J
    J Gen Physiol; 2005 Sep; 126(3):205-12. PubMed ID: 16129771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of S6 tail mutations on charge movement in Shaker potassium channels.
    Ding S; Horn R
    Biophys J; 2003 Jan; 84(1):295-305. PubMed ID: 12524283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Status of the intracellular gate in the activated-not-open state of shaker K+ channels.
    del Camino D; Kanevsky M; Yellen G
    J Gen Physiol; 2005 Nov; 126(5):419-28. PubMed ID: 16260836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of ion permeation gating in Slo2.1 K+ channels.
    Garg P; Gardner A; Garg V; Sanguinetti MC
    J Gen Physiol; 2013 Nov; 142(5):523-42. PubMed ID: 24166878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine scanning and modification reveal major differences between BK channels and Kv channels in the inner pore region.
    Zhou Y; Xia XM; Lingle CJ
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):12161-6. PubMed ID: 21730134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Being flexible: the voltage-controllable activation gate of kv channels.
    Labro AJ; Snyders DJ
    Front Pharmacol; 2012; 3():168. PubMed ID: 22993508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular coupling of S4 to a K(+) channel's slow inactivation gate.
    Loots E; Isacoff EY
    J Gen Physiol; 2000 Nov; 116(5):623-36. PubMed ID: 11055991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.