BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37212854)

  • 1. Massive-Scale Dissolution, Conveyance, and Disposal of Dead Sea Potash Industry Halite Waste.
    Reznik IJ; Gavrieli I
    Environ Sci Technol; 2023 Jun; 57(22):8385-8395. PubMed ID: 37212854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of turbidity in gypsum-precipitating brines: The case of the Red Sea - Dead Sea project.
    Reiss AG; Ganor J; Hamawi M; Gavrieli I
    J Environ Manage; 2021 Jun; 288():112369. PubMed ID: 33765576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixing of Dead Sea and Red Sea waters and changes in their physical properties.
    Khlaifat A; Batarseh M; Nawayseh K; Amira J; Talafeha E
    Heliyon; 2020 Nov; 6(11):e05444. PubMed ID: 33204889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia.
    Liu J; Chen Z; Wang L; Zhang Y; Li Z; Xu J; Peng Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15003-14. PubMed ID: 27080408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace element fractionation through halite crystallisation: Geochemical mechanisms and environmental implications.
    Censi P; Sirota I; Zuddas P; Lensky N; Merli M; Saiano F; Piazzese D; Sposito F; Venturelli M
    Sci Total Environ; 2020 Jun; 723():137926. PubMed ID: 32217400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare earths release from dissolving atmospheric dust and their accumulation into crystallising halite: The Dead Sea example.
    Censi P; Sirota I; Zuddas P; Lensky NG; Crouvi O; Cangemi M; Piazzese D
    Sci Total Environ; 2023 Jun; 875():162682. PubMed ID: 36894097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evaporation path of seawater and the coprecipitation of Br- and K+ with halite.
    McCaffrey MA; Lazar B; Holland HD
    J Sediment Petrol; 1987 Sep; 57(5):928-38. PubMed ID: 11542110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation study on the mining conditions of dissolution of low grade solid potash ore in Qarhan Salt Lake.
    Li R; Liu C; Jiao P; Hu Y; Liu W; Wang S
    Sci Rep; 2021 May; 11(1):10539. PubMed ID: 34006941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California.
    Schubert BA; Lowenstein TK; Timofeeff MN
    Astrobiology; 2009 Jun; 9(5):467-82. PubMed ID: 19566426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of paleoclimate on the distribution of microbial communities in the subsurface sediment of the Dead Sea.
    Thomas C; Ionescu D; Ariztegui D;
    Geobiology; 2015 Nov; 13(6):546-61. PubMed ID: 26202605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA metabarcoding illustrates biological pollution threats of Red Sea - Dead Sea water conveyance to Dead Sea biodiversity.
    Georges O; Fernández S; Martinez JL; Garcia-Vazquez E
    Mar Pollut Bull; 2021 Jul; 168():112451. PubMed ID: 33971452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaeal diversity along a subterranean salt core from the Salar Grande (Chile).
    Gramain A; Díaz GC; Demergasso C; Lowenstein TK; McGenity TJ
    Environ Microbiol; 2011 Aug; 13(8):2105-21. PubMed ID: 21355972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The brine depth of the Khorat Basin in Thailand as indicated by high-resolution Br profile.
    Shen L; Siritongkham N; Wang L; Liu C; Nontaso A; Khadsri W; Hu Y
    Sci Rep; 2021 Apr; 11(1):8673. PubMed ID: 33883638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular acclimation of
    Favreau C; Tribondeau A; Marugan M; Guyot F; Alpha-Bazin B; Marie A; Puppo R; Dufour T; Huguet A; Zirah S; Kish A
    Front Microbiol; 2022; 13():1075274. PubMed ID: 36875534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment.
    Siebert C; Rödiger T; Mallast U; Gräbe A; Guttman J; Laronne JB; Storz-Peretz Y; Greenman A; Salameh E; Al-Raggad M; Vachtman D; Zvi AB; Ionescu D; Brenner A; Merz R; Geyer S
    Sci Total Environ; 2014 Jul; 485-486():828-841. PubMed ID: 24767316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological characterization of hair shampoo in the presence of dead sea salt.
    Abu-Jdayil B; Mohameed HA; Sa'id M; Snobar T
    Int J Cosmet Sci; 2004 Feb; 26(1):19-29. PubMed ID: 18494921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water input requirements of the rapidly shrinking Dead Sea.
    Abu Ghazleh S; Hartmann J; Jansen N; Kempe S
    Naturwissenschaften; 2009 May; 96(5):637-43. PubMed ID: 19252888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of optimal dead sea salt content in a cosmetic emulsion using rheology and stability measurements.
    Abu-Jdayil B; Mohameed HA; Bsoul A
    J Cosmet Sci; 2008; 59(1):1-14. PubMed ID: 18350231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing pigment production by halophilic bacteria and its effect on brine evaporation rates.
    Silva-Castro GA; Moyo AC; Khumalo L; van Zyl LJ; Petrik LF; Trindade M
    Microb Biotechnol; 2019 Mar; 12(2):334-345. PubMed ID: 30277309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project.
    Kottmeier C; Agnon A; Al-Halbouni D; Alpert P; Corsmeier U; Dahm T; Eshel A; Geyer S; Haas M; Holohan E; Kalthoff N; Kishcha P; Krawczyk C; Lati J; Laronne JB; Lott F; Mallast U; Merz R; Metzger J; Mohsen A; Morin E; Nied M; Rödiger T; Salameh E; Sawarieh A; Shannak B; Siebert C; Weber M
    Sci Total Environ; 2016 Feb; 544():1045-58. PubMed ID: 26779955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.