BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37213382)

  • 1. A systematic review of handover actions in human dyads.
    Kopnarski L; Rudisch J; Voelcker-Rehage C
    Front Psychol; 2023; 14():1147296. PubMed ID: 37213382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring System for Synchronous Recording of Kinematic and Force Data during Handover Action of Human Dyads.
    Kutz DF; Kopnarski L; Püschel J; Rudisch J; Voelcker-Rehage C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the invisible: receivers use object weight cues for grip force planning in handover actions.
    Kopnarski L; Rudisch J; Kutz DF; Voelcker-Rehage C
    Exp Brain Res; 2024 May; 242(5):1191-1202. PubMed ID: 38498154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humans adjust their grip force when passing an object according to the observed speed of the partner's reaching out movement.
    Controzzi M; Singh H; Cini F; Cecchini T; Wing A; Cipriani C
    Exp Brain Res; 2018 Dec; 236(12):3363-3377. PubMed ID: 30259134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-Human Handover Tasks and How Distance and Object Mass Matter.
    Hansen C; Arambel P; Ben Mansour K; Perdereau V; Marin F
    Percept Mot Skills; 2017 Feb; 124(1):182-199. PubMed ID: 30208781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grip-force modulation in human-to-human object handovers: effects of sensory and kinematic manipulations.
    Döhring FR; Müller H; Joch M
    Sci Rep; 2020 Dec; 10(1):22381. PubMed ID: 33361768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal movement planning and rapid adaptation for manual interaction.
    Huber M; Kupferberg A; Lenz C; Knoll A; Brandt T; Glasauer S
    PLoS One; 2013; 8(5):e64982. PubMed ID: 23724112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictability shapes movement kinematics and grip force regulation in human object handovers.
    Brand TK; Maurer LK; Müller H; Döhring FR; Joch M
    Hum Mov Sci; 2022 Oct; 85():102976. PubMed ID: 35917714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing human-robot handovers: the impact of adaptive transport methods.
    Käppler M; Mamaev I; Alagi H; Stein T; Deml B
    Front Robot AI; 2023; 10():1155143. PubMed ID: 37520939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Human Intention Prediction Approach Based on Fuzzy Rules through Wearable Sensing in Human-Robot Handover.
    Zou R; Liu Y; Li Y; Chu G; Zhao J; Cai H
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Grasp Strategy of a Robot Passer Influences Performance and Quality of the Robot-Human Object Handover.
    Ortenzi V; Cini F; Pardi T; Marturi N; Stolkin R; Corke P; Controzzi M
    Front Robot AI; 2020; 7():542406. PubMed ID: 33501313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergent Synergistic Grasp-Like Behavior in a Visuomotor Joint Action Task: Evidence for Internal Forward Models as Building Blocks of Human Interactions.
    Guo LL; Patel N; Niemeier M
    Front Hum Neurosci; 2019; 13():37. PubMed ID: 30787873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dataset of bimanual human-to-human object handovers.
    Kshirsagar A; Fortuna R; Xie Z; Hoffman G
    Data Brief; 2023 Jun; 48():109277. PubMed ID: 37383751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic Motion Prediction and Skill Learning for Human-to-Cobot Dual-Arm Handover Control.
    Yan Z; He W; Wang Y; Sun L; Yu X
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):1192-1204. PubMed ID: 35771786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving postoperative handover from anaesthetists to non-anaesthetists in a children's intensive care unit: the receiver's perception.
    Fabila TS; Hee HI; Sultana R; Assam PN; Kiew A; Chan YH
    Singapore Med J; 2016 May; 57(5):242-53. PubMed ID: 27211792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.
    Allen D; Gillen E; Rixson L
    JBI Libr Syst Rev; 2009; 7(3):80-129. PubMed ID: 27820426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The where of handovers by humans: Effect of partner characteristics, distance and visual feedback.
    Kato S; Yamanobe N; Venture G; Yoshida E; Ganesh G
    PLoS One; 2019; 14(6):e0217129. PubMed ID: 31226108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interventions employed to improve intrahospital handover: a systematic review.
    Robertson ER; Morgan L; Bird S; Catchpole K; McCulloch P
    BMJ Qual Saf; 2014 Jul; 23(7):600-7. PubMed ID: 24811239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.