These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37213933)
1. Beyond passive observation: feedback anticipation and observation activate the mirror system in virtual finger movement control via P300-BCI. Syrov N; Yakovlev L; Miroshnikov A; Kaplan A Front Hum Neurosci; 2023; 17():1180056. PubMed ID: 37213933 [TBL] [Abstract][Full Text] [Related]
2. Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study. Luo TJ; Lv J; Chao F; Zhou C Front Neurosci; 2018; 12():219. PubMed ID: 29674949 [TBL] [Abstract][Full Text] [Related]
3. A Novel Online Action Observation-Based Brain-Computer Interface That Enhances Event-Related Desynchronization. Zhang X; Hou W; Wu X; Feng S; Chen L IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2605-2614. PubMed ID: 34878977 [TBL] [Abstract][Full Text] [Related]
4. Superior Facilitation of an Action Observation Network by Congruent Character Movements in Brain-Computer Interface Action-Observation Games. Lim H; Ku J Cyberpsychol Behav Soc Netw; 2021 Aug; 24(8):566-572. PubMed ID: 33275851 [TBL] [Abstract][Full Text] [Related]
5. Action Observation of Own Hand Movement Enhances Event-Related Desynchronization. Nagai H; Tanaka T IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1407-1415. PubMed ID: 31144639 [TBL] [Abstract][Full Text] [Related]
6. Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice? Vasilyev AN; Nuzhdin YO; Kaplan AY Brain Sci; 2021 Sep; 11(9):. PubMed ID: 34573253 [TBL] [Abstract][Full Text] [Related]
7. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression. Lim H; Ku J IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2290-2296. PubMed ID: 30371380 [TBL] [Abstract][Full Text] [Related]
8. Can a highly accurate multi-class SSMVEP BCI induce sensory-motor rhythm in the sensorimotor area? Zhang X; Xu G; Ravi A; Pearce S; Jiang N J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32238617 [No Abstract] [Full Text] [Related]
9. Attentional state-synchronous peripheral electrical stimulation during action observation induced distinct modulation of corticospinal plasticity after stroke. Jeong CH; Lim H; Lee J; Lee HS; Ku J; Kang YJ Front Neurosci; 2024; 18():1373589. PubMed ID: 38606309 [TBL] [Abstract][Full Text] [Related]
10. Brain-computer interface-based action observation combined with peripheral electrical stimulation enhances corticospinal excitability in healthy subjects and stroke patients. Kim MG; Lim H; Lee HS; Han IJ; Ku J; Kang YJ J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35675795 [No Abstract] [Full Text] [Related]
11. Performance of the Action Observation-Based Brain-Computer Interface in Stroke Patients and Gaze Metrics Analysis. Zhang X; He L; Gao Q; Jiang N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1370-1379. PubMed ID: 38512735 [TBL] [Abstract][Full Text] [Related]
12. Cortical sources of electroencephalographic alpha rhythms related to the anticipation and experience of mirror visual feedback-induced illusion of finger movements. Rizzo M; Del Percio C; Petrini L; Lopez S; Arendt-Nielsen L; Babiloni C Psychophysiology; 2023 Jun; 60(6):e14281. PubMed ID: 36852668 [TBL] [Abstract][Full Text] [Related]
13. Brain oscillatory signatures of motor tasks. Ramos-Murguialday A; Birbaumer N J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484 [TBL] [Abstract][Full Text] [Related]
14. Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network. Usama N; Niazi IK; Dremstrup K; Jochumsen M Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577481 [TBL] [Abstract][Full Text] [Related]
15. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977 [TBL] [Abstract][Full Text] [Related]
16. Mu-desynchronization, N400 and corticospinal excitability during observation of natural and anatomically unnatural finger movements. Syrov N; Bredikhin D; Yakovlev L; Miroshnikov A; Kaplan A Front Hum Neurosci; 2022; 16():973229. PubMed ID: 36118966 [TBL] [Abstract][Full Text] [Related]
17. Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy. Norman S; Dennison M; Wolbrecht E; Cramer S; Srinivasan R; Reinkensmeyer D IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):911-919. PubMed ID: 26891487 [TBL] [Abstract][Full Text] [Related]
18. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses. Ramos-Murguialday A; Schürholz M; Caggiano V; Wildgruber M; Caria A; Hammer EM; Halder S; Birbaumer N PLoS One; 2012; 7(10):e47048. PubMed ID: 23071707 [TBL] [Abstract][Full Text] [Related]
19. Mirror visual feedback during unilateral finger movements is related to the desynchronization of cortical electroencephalographic somatomotor alpha rhythms. Rizzo M; Petrini L; Del Percio C; Lopez S; Arendt-Nielsen L; Babiloni C Psychophysiology; 2022 Dec; 59(12):e14116. PubMed ID: 35657095 [TBL] [Abstract][Full Text] [Related]
20. On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations With a Pseudo-Online Brain-Controlled Speller. Bevilacqua M; Perdikis S; Millan JDR IEEE Open J Eng Med Biol; 2020; 1():17-22. PubMed ID: 35402943 [No Abstract] [Full Text] [Related] [Next] [New Search]